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Bias in population oral health research: longitudinal studies
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Abstract: Bias in longitudinal studies have been well described and the longer the follow-up, the higher the proportion of 
drop-outs. Here, I present some key issues related to selection bias, time-varying confounders, solutions to bias and challenges 
in longitudinal studies in dental research. Selection bias creates distortions in measures of disease frequency or association 
due to losses of follow-up or use of specific population groups. It is shown that even if losses are not associated with base-
line values, measures such as odds ratios may be seriously distorted. Such problems can be understood by directed acyclic 
graphs, identifying the collider bias, or by missing data theory. Time-varying confounding occurs when an exposure varies 
over time and is affected by past exposure of other time-varying covariates, creating a complex scenario to adjustment in 
multiple regression. Under some assumptions, missing information may be informed by other variables in the dataset, and 
techniques such as multiple imputation or inverse probability weighting can be helpful, but the best solution is to prevent 
losses of follow-up as much as possible. Finally, I present challenges for longitudinal studies that use electronic health records 
and the need to incorporate area-based contextual measures. The first allows linkage of dental records with other informa-
tion systems to create longitudinal (big) data. The second allows evaluation longitudinally of the effect of contextual factors, 
including social and health policies, on oral health.
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Introduction

Longitudinal studies in epidemiology are an important 
methodological design that establishes temporal sequence 
between events, reducing recall bias (Hardt and Rutter, 
2004), and helping researchers to understand complex 
relationships among risk factors. Over time, this type of 
study has become more frequent in dental public health 
(Celeste et al., 2016), indicating availability of such data. 
Additionally, demographic changes demanded a shift 
from short term longitudinal studies among children to 
larger and longer cohorts among adults and older people 
(Celeste et al., 2016). 

An important issue when starting a cohort is to de-
cide for how long individuals should be followed. This 
decision depends on the pathogenesis of the disease of 
interest and the risk factors we would like to study. The 
longer the time of follow-up, the more repeated measures 
will be required and more likely individuals will be lost. 

Decisions concerning follow-up times may involve 
several factors. One aspect is the induction time, that is 
the time an individual must be exposed to a risk fac-
tor up to a level that it irreversibly leads to the disease 
(Greenland and Lash, 2008; K J Rothman, 1981). The 
induction time depends on the risk factor and is usually 
an unknown period. Another aspect is the latency time 
that can be defined as the time from the beginning of a 
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disease until its clinical diagnosis (Greenland and Lash, 
2008; K J Rothman, 1981). This is a disease-specific char-
acteristic that has been described for some oral diseases. 
For example, clinically detectable dentine carious lesions 
in children have been estimated to require between four 
to seven years (Arrow, 2007; Kopycka-Kędzierawski et 
al., 2004). Gingivitis takes around two to three weeks to 
develop, if oral hygiene is refrained (Löe et al., 1965). 
Evidence of untreated sites of periodontitis among adults 
suggest that bone loss may progress between 0.3mm to 
1.0mm per year (Haas et al., 2012; Reddy et al., 2000). 
Oral cancer has a much longer latency, varying from 12 
years for the oropharynx to 26 years to tongue tumours 
(Nadler and Zurbenko, 2014). Having a minimum time 
of follow-up defined, many operational issues still remain 
and most will impose difficulties maintaining data qual-
ity. After many years of follow-up of a large sample, it 
is in the interest of all stakeholders and participants to 
ensure bias in the data is minimal. 

Two parameters are usually affected by any bias: the 
point estimates (i.e. means and proportions) and measures 
of associations (e.g. attributable or relative risk). In this 
paper, I will refer mainly to distortions in associations 
because this is the main objective in aetiological studies. 
Unbiased point estimates (e.g. prevalence or incidence) 
are the main objective of epidemiological surveys and 
therefore, less common in longitudinal studies.
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The problem of bias in longitudinal studies

Bias is any distortion in estimates of the true population 
parameters (Greenland and Lash, 2008; Szklo and Nieto, 
2007). In epidemiology, selection and measurement (or 
information) bias, along with issues of confounding 
are the most commonly described. Although the list of 
types of bias is long (Delgado-Rodríguez and Llorca, 
2004), in longitudinal studies, loss of follow-up is an 
important selection bias originating mainly from deaths 
during the study period (differential survival) or attrition 
(non-participation). While the first is out of a researcher’s 
control, the second is reasonably manageable. Survival 
bias may distort estimates in cross-sectional studies where 
prevalent cases represent those who survived prior to the 
start of the study (Neyman bias) (Banack et al., 2019; 
Delgado-Rodríguez and Llorca, 2004). In this paper, biases 
that are common to other studies will not be targeted as 
they have been extensively described elsewhere (Beck et 
al., 1997; Pahel et al., 2011; Preisser et al., 2017; Slade 
and Caplan, 1999) nor will issues concerning confound-
ing (Merchant and Pitiphat, 2002).

Selection Bias: understanding the mechanisms
The mechanism for selection bias can be explained by 
two different approaches. The first, using missing data 
theories can be helpful, as proposed by Rubin (1976) 
and extensively described in the statistical literature 
(Graham, 2009; Schafer and Graham, 2002). This ap-
proach describes non-causal mechanisms that may alter 
probabilities of selection and treats missing data as a 
source of bias, regardless of the reason for the absence, 
be it loss of follow-up due to change of address, selec-
tive survival, or any other. In the second, using Directed 
Acyclic Graphs (DAGs) to explain causal relations among 
variables has gained popularity in epidemiology (Hernán 
et al., 2004). In this approach, a general rule is applied 
to identify the so called “collider bias”, or “confounding 
by indication”.

Rubin defined missing data according to three mecha-
nisms, missing completely at random (MCAR), missing 
at random (MAR) and missing not at random (MNAR) 
(Rubin, 1976; Schafer and Graham, 2002) The first case, 
MCAR, may be very simple if we understand that a 
sample selection based on simple randomization means 
that all individuals not selected (unit non-response) were 
so because of chance. In other cases, an individual may 
participate in a given study, but leave some questions 
blank (item non-response) due to chance. However, MAR 
happens when the missing values of variable X do not 
depend on themselves, but are associated with variable Y. 
Finally, MNAR happens when the missing data depends 
on its own values. For example, in a longitudinal study, 
it may occur if individuals that are non-responders in 
the second wave decided systematically not take part 
because their baseline clinical exams showed they had no 
problems (they felt “safe”). Clearly, the mean values will 
be altered and standard deviation will decrease because 
of the homogeneity of remaining individuals. Although 
this situation may not be related to other variables, it 
will likely affect associations.

As an example, Table 1 shows the proportions of two 
variables, sex and people with teeth in good conditions, 

based on actual longitudinal data (Celeste and Fritzell, 
2018). While the first column presents values at baseline 
in 1968, the second and third columns show those values 
considering 61% of losses in 2011. Although, it is a 
high proportion, selection bias may arise with losses as 
low as 5% (if all losses concentrate in one cell) and the 
often-heard “rule-of-thumb”, that 20% of losses may be 
acceptable, has long been refuted (Greenland, 1977). The 
second column is a case of MAR, as missing data on sex 
and teeth in good condition were associated with survival 
in unadjusted analysis. However, the third column shows 
absence was not associated with hypothetical cases of 
survival, but it is also a case of MAR, as missing cases 
of sex (or teeth) were unrelated to their own values. Note 
that cases of MAR may or may not bias the association 
between sex and teeth in good condition, as shown in 
Table 2. What initially appeared as biased data (true 
survivors) was unbiased based on the odds ratio (full 
data OR=1.31 versus survivors OR=1.34), while the 
two scenarios of hypothetical survivors could result in 
an increase or decrease of the magnitude of association 
(OR=2.45 or OR=0.60). The scenario of bias in asso-
ciation, when the losses are unrelated to the exposure, 
as in our hypothetical survivors, was demonstrated by 
Greenland (1977).

DAGs are useful because they provide an important 
conceptual aid to anticipate problems in design of lon-
gitudinal studies and facilitate selection of appropriate 
controls in multiple regression analysis. Details about 
rules and interpretation of DAGs can be seen elsewhere 
(Glymour, 2006; Merchant and Pitiphat, 2002). The issue 
about collider bias lays in the D-separation rule, which 
states that, if two variables are not associated, they will 
be associated if conditioned – restricted – to a common 
effect. Here, I illustrate with two hypothetical examples 
what may happen in dental caries research. In Figure 1a) 
root caries will not be associated with calcium deficiency 
in the general population. However, among a specific 
population (for example institutionalized older people), 
it is reasonable to presume root caries would be nega-
tively associated. This bias is not trivial, as restricting 
to institutionalized older people has indirectly created a 
spurious association (backdoor) between lack of physical 
mobility (including toothbrushing) and difficulties in food 

Source: (Celeste and Fritzell 2018)

Sex

Baseline True Survivors
Hypothetical 

Survivors

% (n) % (n) % (n)

Male 49.9 (467) 38.1 (138) 49.9 (181)

Female 50.1 (469) 61.9 (225) 50.1 (182)

Total 100 (936) 100 (363) 100 (363)

Teeth not in good conditions in 1968?

No 61.2 (573) 54.5 (198) 60.9 (221)

Yes 38.8 (363) 45.5 (165) 39.1 (142)

Total 100 (936) 100 (363) 100 (363)

Table 1. Marginal distribution of sex and teeth conditions of 
individuals at the baseline in 1968 in the whole sample and 
among survivors in 2011.
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 Teeth not in good conditions in 1968?
Yes No Total

n (%) n (%) n (%)

Baseline Odds Ratio=1.31
Male 196 (42.0%) 271 (58.0%) 467 (100%)
Female 167 (35.6%) 302 (64.4%) 469 (100%)
Total 363 (38.8%) 573 (61.2%) 936 (100%)

True Survivors Odds Ratio=1.34
Male 69 (50.0%) 69 (50.0%) 138 (100%)
Female 96 (42.7%) 129 (57.3%) 225 (100%)
Total 165 (45.5%) 198 (54.5%) 363 (100%)

Hypothetical Survivors 1 Odds Ratio=2.45
Male 90 (49.7%) 91 (50.3%) 181 (100%)
Female 52 (28.6%) 130 (71.4%) 182 (100%)
Total 142 (39.1%) 221 (60.9%) 363 (100%)

Hypothetical Survivors 2 Odds Ratio=0.60
Male 60 (33.1%) 121 (66.9%) 181 (100%)
Female 82 (45.1%) 100 (54.9%) 182 (100%)
Total 142 (39.1%) 221 (60.9%) 363 (100%)

Table 2. Distribution of teeth conditions by sex in 1968 considering all individuals at baseline in 1968 and only survivors in 2011.

Source: (Celeste and Fritzell 2018)
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Figure 1. Casual diagram showing hypothetical selection bias in two cases: a) the association between root caries and calcium 
deficiency due to conditioning on institutional elders. In this example, most elders that have milk intolerance will not have 
difficulty in toothbrushing; therefore those with calcium deficiency will develop less root caries due to selection bias. b) in a 
clinical trial two factors can lead to drop-outs, only one is associated with tooth loss; therefore conditioning one drop-outs will 
create a biased association between atraumatic restorative treatment with tooth loss. In both cases, bias cannot be removed 
because the causes of conditioning are unmeasured or unknown.

preparation (including milk intolerance) of. Some older 
people will have both problems, but most will have only 
one. Those with a milk intolerance may not have problems 
tooth brushing. In light of this, researchers need to be 
cautious when developing inclusion and exclusion criteria 
for sample selection, as this is usually a source of bias. 
Secondly, the problem in using population subgroups is 
not an issue of lack of generalizability to other popula-
tions, but lack of internal validity, as the association is 
spurious even among those older people. The degree of 
bias, and even if there is no bias at all, will vary and 
we cannot predict with certainty.

In Figure 1b), we also have bias introduced by restrict-
ing analysis to those that remained in a clinical trial to 

investigate if atraumatic restorative treatment (ART) may 
increase tooth survival. Again, this is an indirect bias, 
because the collider is not the drop-out variable but its 
cause. It is plausible that individuals with dental pain or 
dentin sensitivity may not attend a recall for the trial. If 
only ART could cause pain and sensibility, no bias would 
happen, but in fact, other dental and mouth problems can 
cause pain and sensibility. Therefore, conditioning on 
those who did not drop-out is equivalent to conducting 
analysis with those without pain/sensibility, which opens 
a backdoor for an association between ART and other 
dental/mouth problem. As other dental problems may lead 
to tooth loss, then such analysis would show a biased 
association between ART and tooth loss.
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Time-varying covariates

Some exposures vary over time and are affected by past 
exposure of other time-varying covariates, a situation that 
often (if not always) occurs in practice (Mansournia et 
al., 2017). In oral epidemiological research, examples 
of time-varying exposures or time-varying confounders 
may include smoking status, sugar consumption, income 
and fluoride exposure. Usually, individual time-varying 
information is collected only during the period when 
subjects are observed and is difficult to be addressed in 
cross-sectional studies.

Figure 2 represents a hypothetical cohort. This figure 
shows the exposure to sugar consumption at baseline (t0) 
and at the first follow-up (t1). This time-varying variable 
is a risk factor for dental caries (t1), but there is reverse 
causation, as dental caries (t0) affects sugar consumption 
(t1). Sugar (t0) is also a time-varying confounder between 
obesity (t1) and dental caries (t1). Finally, because past 
exposures affect future exposure, sugar (t1) mediates 
indirect effects of sugar (t0), or obesity (t0), on caries 
(t1). Controlling for such problems requires longitudinal 
studies with repeated measures, but conventional methods, 
as multiple regression, will over-adjust when controlling 
for mediators that are also confounders and open backdoor 
associations when controlling for colliders.

Commonly, epidemiologists want to estimate the 
total (direct) non-confounded effect of a risk factor on 
a disease. For this, an adequate solution is the use of 
G-methods (Mansournia et al., 2017), although the use 
of path analysis can also incorporate repeated measures 
of exposure and outcome, incorporating reverse causation 
(see (Darin-Mattsson et al., 2018)).

Some ways to correct and prevent bias in 
longitudinal studies

Again, bias may lay on measurement or selection prob-
lems and so, there are distinct solutions for each case. 
Most methods to correct bias are based on correcting 
measurement error. For such cases, when values of speci-
ficity and sensitivity are available, and no confounding 
exists (e.g randomized trials), a correction can be im-
plemented (Antunes, 2019; Greenland and Lash, 2008). 
Methods to correct selection bias usually rely on external 
sources, such as population census or baseline data – to 
reconstruct the proportions by sex, age and possible other 
important factors (Graham, 2009). While such methods 
can reconstitute point estimates, it is unclear if they can 
correct distortions in associations because there is no 
information on distributions of disease cases by covari-
ates (see examples in Table 2).

As discussed, selection bias can be understood as a 
case of missing data. For cases of MCAR, the use of 
complete-case analysis, also called listwise deletion, is 
satisfactory. Under the MCAR assumption, missing data 
on prevalence or incidence varies randomly from their 
true values. However, if we have more missing data 
among men than among women, overall means and 
proportions will be biased. If those missing cases are 
related to a known variable, then it is a case of MAR. In 
epidemiological surveys, absence is the result of sampling 
design. This information can be used to produce sampling 
weights to correct means and standard-deviations. Under 
MAR assumptions, in longitudinal studies, point estimates 
can be reconstituted from baseline information. For 
example, if we have lost half of the men from the first 
to the second wave, the remaining men may be assign 
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Figure 2. Time varying covariates in longitudinal studies about dental caries with repeated measures: a) sugart0 is confounding 
factor for associated obesityt1 and cariest1; b) sugart1 is a mediator for total effect of sugart0 on cariest1; c) sugart1 is collider 
for the association between obesityt0 and sugart0; d) there is sample selection due to reverse causation of cariest0 on sugart1
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a weight of two, and this idea is the basis for inverse 
probability weighting (IPW). Multiple imputation (MI) 
is also based on internal information to recover missing 
data, as long as this is a case of item non-response and 
good predictors do exit in the data set. Under MNAR, 
no statistical technique seems good, although under 
some probability assumptions, it is useful for sensitivity 
analysis (Graham, 2009), where we can test the effects 
of different scenarios.

Preventing missing datahas always been associated 
with good research practices and also quality control 
(Van Den Broeck et al., 2005). In cases where missing 
data is unavoidable such as deaths in dental geriatric 
and gerodontology studies, some suggestions may be 
at hand. First, if we believe that selective survival does 
not influence the associations of interest, then the major 
problem is lack of statistical power. For this problem, 
the use of open cohort may be a solution because in-
dividuals may enter the cohort at any time. Although it 
brings some complexity to analysis, statistical alterna-
tives to cumulative risk have been extensively described 
(Beck et al., 1997; Slade and Caplan, 1999). Second, 
under the MAR assumption, several variables that may 
predict loss of follow-up should be collected in the first 
instance. Techniques such as MI, IPW, propensity scores 
or instrumental variables may be used to yield unbiased 
results (Banack et al., 2019).

Methodological and Theoretical Challenges for 
Longitudinal Studies 

Methodological challenges for longitudinal studies in 
dental caries have long been described (Slade and Caplan, 
1999). Unfortunately, some are yet to be resolved and 
some new issues have appeared. In this section, I will 
briefly consider two contemporary challenges for longi-
tudinal studies: 1) the use of electronic health records, 
and 2) incorporation of area-based contextual measures.

The use of dental records has been described as 
secondary data and used as aggregate variables, mostly 
in ecological studies, with few examples using them at 
an individual level (Leake and Werneck, 2005; Olsen, 
2008). Nevertheless, the advent of electronic records ac-
cessed electronically, with linkage to several databases, 
brought the possibility of using individual level big data 
in dental research. Current availability of electronic health 
registers may also allow large (retrospective) cohort stud-
ies combining multiple generations with clinical, socio-
economical, pharmacological, behavioural and other data, 
sometimes representative of the general population if the 
country has universal dental health coverage.

There are challenges to overcome before widespread 
use of electronic health records in health research 
analysis becomes the norm. Firstly, concerns about lack 
of standardized diagnostic criteria and changes over 
time affect quality and make longitudinal comparisons 
almost impossible. If non-differential misclassification 
happens, then associations may be washed out, but if 
lack of quality means systematic error, then associations 
may be seriously distorted. Despite that, there is some 
evidence of validity of data from dental records, such as 
tooth loss (Ljung et al., 2019). Secondly, selection bias 

introduced by constraining analysis to healthcare users 
is also a major concern, which hinders several research 
questions. For example, while most healthcare users have 
some health problems that lead them to seek treatment, 
many health insurance companies deny (or delay) treat-
ment for a long list of pre-existing conditions leading to 
a healthier population. When data stem from screening 
programs, such as in school prevention dental programs, 
then this bias may be minimized. Finally, ethical concerns 
about privacy are also important (Olsen, 2008). Overall, 
the more researchers use such data, the faster identified 
problems will be solved.

Area-based contextual measures have been important 
determinants in oral health and many measures have 
been used in social science and policy analysis (Aguiar 
et al., 2017; Locker, 2000). Contextual measures in den-
tistry include social capital, water fluoridation, access to 
healthcare, public policies, availability of sugary foods at 
local shops, neighbourhood infra-structure or contextual 
deprivation, environmental exposures and any variables 
that are not a characteristic of an individual. 

Most contextual studies use cross-sectional data, and 
longitudinal studies present some challenges. One of 
which concerns the geographical mobility of study par-
ticipants, exposing them to different contexts; therefore, 
the correct identification of the exposure level is difficult. 
For example, people commute to work within large areas, 
and the idea of a small and homogeneous area may not 
be possible. Another concern is definition of the size and 
borders of the geographical area that has to match the 
exposure concept. For example, a study about a local 
health policy may use the catchment area of healthcare 
centres, but another study about social capital may need 
an area with borders socially defined by neighbourhoods. 
The use of census tracks is the most common solution, 
because of the availability of valid estimates at a con-
textual level. Nonetheless, census data may not have the 
desired theoretical meaning and may mismatch the area 
borders. A third issue is the unknown induction time, 
posing difficulties in defining time to follow-up. Finally, 
even if the sample size of individuals within each area 
is sufficient, there must be a large number of areas to 
allow between-area variability, then the final sample size 
may be large and geographically spread.

Concluding remarks

Several types of bias may occur in longitudinal oral 
health studies, but selection bias is the most common 
threat to their validity. Researchers need to understand 
it to prevent and deal adequately. The use of DAGs to 
identify colliders must be encouraged in early stages 
of study concept. Nonetheless, missing data have to be 
dealt with carefully and details of how they were handled 
must be explicit. 
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