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Abstract: Evidence regarding the genomic basis of oral/dental traits and diseases is a fundamental pillar of the emerging notion of preci-
sion health. During the last decade, technological advances have improved the feasibility and affordability of conducting genome-wide 
association studies (GWAS) and studying the associations of emanating data with both common and rare oral conditions. Most evidence 
thus far emanates from GWAS of dental caries and periodontal disease that have tested the associations of several million single nucleotide 
polymorphisms (SNPs) with typically binary, health vs. disease phenotypes. GWAS offer advantages over the previous candidate-gene 
studies, mainly owing to their agnostic (i.e., unbiased, or hypothesis-free) nature. Nevertheless, GWAS are prone to virtually all sources 
of random and systematic error. Here, we review common sources of bias in genomics research with focus on GWAS including: type I 
and II errors, population stratification and heterogeneity, selection bias, adjustment for heritable covariates, appropriate reference panels 
for imputation, and gene annotation. We argue that valid and precise phenotype measurement is a key requirement, as GWAS sample 
sizes and thus statistical power increase. Finally, we stress that the lack of diversity of populations with phenotypes and genotypes is a 
major limitation for the generalizability and ultimate translation of the emerging genomics evidence-base into oral health promotion for all.
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Introduction

Evidence regarding the genomic basis of oral/dental 
traits and diseases is a fundamental pillar of the emerg-
ing notion of precision health (Divaris, 2017). During 
the last decade, technological advances have improved 
the feasibility and affordability of generating genome-
wide association (GWAS) data and studying the genetic 
underpinning of both common and rare oral conditions. 
In the oral health domain, most evidence has thus far 
emanated from GWAS of dental caries and periodon-
tal disease that have tested the associations of several 
million single nucleotide polymorphisms (SNPs) with 
typically binary, health vs. disease phenotypes (Morelli 
et al. 2019). GWAS offer advantages over the previous 
candidate-gene studies, mainly owing to their agnostic 
(i.e., unbiased, or hypothesis-free) nature. Nevertheless, 
GWAS are prone to virtually all sources of random and 
systematic error, as well as reporting bias. Here, we 
review common sources of bias in genomics research, 
focusing specifically on GWAS, including: 1) type I and 
II errors, 2) population stratification and heterogeneity, 
3) selection bias, 4) adjustment for heritable covariates, 
5) appropriate reference panels for imputation, gene an-
notation and genotyping, 6) lack of racial/ethnic diversity 
at the international level in the available cohorts and 
samples. We conclude that recognizing and adequately 
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controlling for those known biases will help build a 
stronger evidence base for the genomic underpinning of 
oral and dental traits and will ultimately contribute to 
better individual and population health.

Definition and measurement of analytical 
endpoints (i.e., GWAS phenotypes)

Similar to any other research study design, valid and 
precise measurement of the analytical endpoint cannot 
be overemphasized in the context of GWAS (van der 
Sluis et al., 2010). Clinical measures of oral and dental 
diseases, periodontitis and dental caries being the most 
common, are traditionally challenging to measure with 
precision and validity, especially in large sample sizes 
and population cohorts. All GWAS reports of dental car-
ies and periodontitis to-date have been based on cross-
sectional data, that are somewhat limited in their potential 
to accurately identify the sources of tooth loss—which 
can lead to the under-estimation of periodontitis his-
tory. Large-scale studies may also rely on partial-mouth 
examinations, screenings versus comprehensive exami-
nations, health records, or even self-reported and proxy 
data for oral diseases (Shungin et al., 2019). All these 
measurement issues likely introduce non-differential bias 
in GWAS, diluting potentially true association signals and 
influencing the replicability of reported findings. 
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Several approaches exist for quantifying the impact 
of measurement error and outcome misclassification on 
study power. Liao and colleagues (2014) demonstrate 
these effects quantitatively using simulated and real data, 
and suggest that the impact on power is much larger 
in the context of misclassification (i.e., in case control 
studies) versus measurement error (i.e., in quantitative 
traits). A recent report by Gordon and colleagues (2015) 
introduced a method and accompanying visualization 
tools for the estimation of power in genetic association 
case-control studies, that allows the consideration of 
different scenarios of (among other features) outcome 
misclassification error rate. 

In terms of study designs that can accommodate 
genome-wide association analyses, the typical biases as-
sociated with selection of participants, cases and controls 
apply. Cohorts may be relatively underpowered compared 
to case-control studies for analyses of binary traits, 
because the latter sample participants based on disease 
status. However, they offer benefits in terms of possible 
longitudinal or repeated measurements and opportunities 
to leverage pleiotropy (i.e., the examination of multiple, 
related outcomes that may naturally co-occur in the 
population). These may not be observed in a focused, 
case-control sample selection that is optimally designed 
to test a narrower hypothesis. Regardless of the ‘parent’ 
study design, it is recommended that information on the 
accuracy (e.g., repeatability) of examined traits in GWAS 
is known or estimated, ideally before the study execution 
(Barendse, 2011), as it may influence or inform down-
stream experimental procedures and analyses. 

Study sample characteristics 

The importance of sample size in GWAS cannot be 
overemphasized (Cantor et al., 2010). Thousands of 
individuals are needed for GWAS because most allele 
effects identified for common, complex diseases are mod-
est or small. Small p-values generated from small sample 
sizes do not necessarily imply trustworthy findings—they 
could very well represent extreme findings, unlikely to be 
observed, or be indicative of model misspecification. As 
mentioned earlier, most GWAS are based on case-control 
designs. The selection of case and control samples is 
important and while it may seem advantageous selecting 
severe or extreme cases in terms of power, especially 
when there are logistical limitations, it can have the 
opposite effect for GWAS (McCarthy et al., 2008). The 
selection of controls in a case-control study is subject 
to Berkson’s bias, a form of selection bias due to the 
inclusion of participants from specific subpopulations 
such as those from clinics and hospitals. Alternatively, 
the use of common ‘healthy’ controls for contrast against 
multiple disease outcomes is less likely to induce bias. 
Latent population substructure (i.e., stratification) can 
also induce spurious associations unless controlled for (Li 
and Yu, 2008). These spurious associations are typically 
a result of varying patterns of racial/ethnic admixture in 
the study sample. Several well-established methods using 
ancestry-informative genetic markers exist to account for 
population substructure, as well as other forms of known 
or cryptic relatedness that might violate assumptions of 
independence in GWAS (Agler et al., 2019).

Type I and type II errors

Type I error is commonly understood as a false positive and 
type II error as a false negative finding. Balancing the po-
tential for these two types of error is a fundamental require-
ment in GWAS for two main reasons: the likely modest 
or weak genetic effects underlying common-complex oral/
dental diseases, and the large number of tests conducted. 
Specifically, it is not uncommon for allelic effects to be 
in the range of 1.1-1.3 relative magnitude, while 1 mil-
lion independent tests are conducted. The requirement of 
implementing a very stringent p-value criterion (typically 
5x10-8) for genome-wide significance (protecting from a 
type I error inflation) comes at the expense of a study’s 
ability to detect small effects (increased type II error). The 
issue magnifies when study sample sizes are modest, in 
the range of 10,000 at best, in the case of most single 
clinical cohorts with dental phenotypes and genotypes. 

Another form of bias is the “winner’s curse”, a term 
used to describe the relatively common phenomenon 
wherein the initially discovered measure of association is 
inflated in the first GWAS compared to its true magnitude 
(Kraft, 2008). A related issue is the use of a discovery 
sample for the development of polygenic (i.e., multi-locus) 
risk scores that may be similarly exaggerated, due to model 
“over-fitting”. To ameliorate the issue with false positive 
findings, overestimation (Zhong and Prentice, 2008) and 
overfitting, replication of genetic findings from GWAS in 
independent, external samples and cohorts is a require-
ment (McCarthy et al., 2008). It must be acknowledged 
that non-replication does not necessarily imply lack of a 
true association but may suggest additional complexity 
in sample ascertainment, between-study heterogeneity 
(Nakaoka and Inoue, 2009), population substructure and 
genetic architecture. In principle, efforts to generalize 
signals across populations are desirable. 

It is important to stress that the primary goal of GWAS 
is to identify loci of relevance to traits and not the precise 
or unbiased measurement of specific SNP associations (i.e., 
effect estimation) within these loci. Effect estimates may 
be substantially biased and arguably, in most instances, the 
causal makers remain unknown until substantial follow-up 
work has been completed in these loci (e.g., bioinformat-
ics annotation, fine mapping, re-sequencing, experimental 
follow-up, etc.). So far, biological information or prior 
existing evidence of association (i.e., prior probability 
of association) are not explicitly incorporated in the dis-
covery stage of most GWAS (Broer et al., 2013)—this 
may inevitably lead to some promising candidates being 
missed under the stringent threshold of multiple testing 
correction. On the other hand, only a small fraction of 
genetic associations reported by candidate gene studies 
appear to replicate in the GWAS setting (Siontis et al., 
2010), suggesting a substantial false positive rate in the 
earlier, candidate-gene study, literature. 

Adjustment for heritable covariates in genetic 
models

The role of adjustment in genetic models employed in 
GWAS is infrequently discussed. Covariates that are 
typically included a priori in these models include study 
design characteristics (i.e., study site or cluster), popu-
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lation substructure (i.e., ancestry principal components, 
family structure/relatedness), age and sex. The inclusion 
of additional terms for covariates that are known to be 
associated with the outcome has been proposed as a 
strategy for reducing the residual variance in the outcome 
(thus increasing statistical power for the discovery GWAS) 
and accounting for potential confounding. However, 
Aschard and colleagues (Aschard et al., 2015) recently 
demonstrated how adjusting for heritable covariates 
(e.g., smoking and diabetes for GWAS of periodontitis) 
can introduce bias in the GWAS effect estimation. This 
“collider bias” is induced by the inclusion of a causally 
associated covariate in the genetic model, creating ap-
parently robust but otherwise spurious associations (Day 
et al., 2016).

Selection of reference panels for imputation and 
annotation databases

It is important to acknowledge that although GWAS 
include a large number of markers (nowadays, several 
million SNPs), they still cover a small fraction of the en-
tire human genome sequence. Carefully-selected, directly 
genotyped SNPs cover a substantial proportion of the 
known, mostly common, variation of the human genome. 
These “tagging” SNPs can then be used to infer (i.e., 
impute) non-typed SNPs and haplotypes, using informa-
tion from panels that include fully-sequenced “reference” 
genomes. The imputation process offers gains in efficiency 
(i.e., fewer SNPs needing to be directly measured) and 
improves the resolution for the characterization of candi-
date loci. However, imputation can itself introduce biases. 
For instance, using reference genomes from “healthy” 
individuals has been shown to significantly bias SNP 
associations of disease-associated markers, i.e., favour-
ing health-associated alleles (Khankhanian et al., 2015), 
that are under-represented in the reference panels. These 
issues may be accentuated when considering trans-ethnic 
populations or heavily admixed samples.

The annotation of the human genome is far from 
uniform or balanced. Traditionally, genes with known 
biological function and appearance in experimental and 
candidate-gene studies are more likely to be annotated. It 
is conceivable, and has actually been shown (Haynes et 
al., 2018), that these genes may be favoured when report-
ing associations over markers and genes for which less 
is known, even if the molecular evidence of association 
is strong. In other words, investigators themselves can 
introduce biases in their GWAS reports, related to the 
qualitative interpretation of their findings. (Kraft, 2008). 
Haynes and colleagues (2018) suggest that the research 
community can overcome this form of bias by prioritiz-
ing empirically derived hypotheses and inferences. On 
the other hand, other areas of the human genome [e.g., 
the human leukocyte antigen (HLA) region] are highly 
polymorphic (Brandt et al., 2015) and are commonly 
excluded altogether from the reporting of GWAS results. 

Selection bias

Selection bias, a known threat to the validity of most 
types of biomedical research, is also relevant to the GWAS 
domain. Conceivably, markers associated with severe 

health outcomes impacting longevity, may be systematically 
under-represented in a cross-sectional study of middle-age 
adults, as they are being selectively removed from the 
population allele pool. In a similar fashion, selection on or 
exclusion of specific sub-types of disease from a GWAS 
may also introduce bias, as it is equivalent to condition-
ing on a collider (Munafo et al., 2018). Theoretically, this 
bias can be accounted for, if the selection effect can be 
quantified (Xiao and Boehnke, 2010) and examined in 
population-based birth cohorts with longitudinal follow-up. 
An interesting scenario arises when longitudinal outcomes 
(e.g., survival, prognosis or incident events) that are con-
ditional on outcome diagnosis and thus susceptibility are 
interrogated in the context of a GWAS. Such analyses are 
prone to “index event bias” wherein this form of selection 
bias can introduce spurious associations, unless accounted 
for (Dudbridge et al., 2019). 

Genotype information quality

High-density genotyping entails the determination (i.e., 
“calling”) of often millions of single nucleotide polymor-
phisms and this comes with an unavoidable error rate. 
Poorly genotyped or imprecisely imputed markers can 
induce both spurious associations and result in decreased 
power to detect true associations. For this reason, GWAS 
employ stringent quality assessment and quality control 
procedures beginning at the genotyping stage. For in-
stance, to address genotyping platform batch effects, cases 
and controls may be equally distributed across plates, 
while other important study variables may be randomized 
for the same reason. Other sources of error can be at-
tributed to possibly different DNA extraction methods 
between cases and controls (if they have been ascertained 
separately or asynchronously). Additional quality filters 
and exclusions are conventionally applied at the SNP level 
(i.e., excluding markers that do not meet pre-specified 
criteria for call rate, imputation quality, Hardy-Weinberg 
equilibrium, etc.) and at the individual participant level 
(i.e., sex mismatches, genetic outliers, etc.). Detection of 
genomic inflation due to residual population stratification 
or other systematic sources of error can be determined by 
the generation and inspection of quantile-quantile (Q-Q) 
plots of observed versus expected association p-values. A 
consensus report of all analytical procedures, including 
quality control, for GWAS in the oral/dental domain has 
been recently reported (Agler et al., 2019). 

Lack of diversity

An astonishing figure--in 2009, 96% of participants in 
GWAS were of European descent, and in 2016 only 20% 
of participants were not of European descent (Popejoy and 
Fullerton, 2016). There are several reasons behind this per-
sistent issue including but not limited to available research 
funding allocation and prioritization, unequal inclusion in 
biomedical research and historic reasons. Hispanic/Latinos, 
African, and Indigenous populations continue to be greatly 
under-represented in the genomics evidence base to-date. 
The systematic exclusion of population segments from the 
evidence base of genetic associations with health outcomes 
is problematic from multiple standpoints, ranging from 
biological to social justice. 
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Importantly, genetic association signals discovered 
from GWAS in populations of European descent do not 
always transfer or generalize to non-European populations. 
This is due to differences in genetic architecture (i.e., 
linkage disequilibrium), association of risk polymorphisms 
with ancestry-informative markers, allele frequency, study 
power, as well as other reasons (Zanetti and Weale, 2018). 
These authors suggest that, although transethnic differ-
ences may be at play in some instances, strong causal 
effects are largely shared among human populations, 
motivating the use of transethnic data for fine mapping 
of these regions. For this reason, the current lack of 
racial/ethnic diversity overall, and specifically in the 
available cohorts and samples with oral/dental pheno-
types and genotypes, is a major limitation that must be 
addressed. This issue hampers the generalizability and 
ultimate translation of the emerging genomics evidence-
base into what is aspirationally envisaged as oral health 
promotion for all. 

Conclusion and recommendations

While numerous sources of bias exist in performing 
and interpreting GWAS of oral and dental traits, these 
are analogous to most other study designs. Here, we 
emphasize that measurement is a primary source of 
bias in the oral/dental domain, as both dental caries and 
periodontal disease are subject to important and variable 
sources of measurement error and misclassification. Ef-
forts to improve measurement are best invested prior to 
study execution, whereas quantification of the possible 
magnitude of error introduced can be carried out post hoc. 
We caution that genetic models employed in GWAS are 
subject to known issues that are relevant in observational 
research, including collider bias (i.e., when adjusting for 
heritable covariates) and non-differential misclassification 
bias towards the null. Additional issues that mainly result 
in necessary caution in interpretation include type I and II 
errors, available panels for imputation and information on 
gene annotation. We stress that the lack of racial/ethnic 
diversity in the currently available cohorts and samples 
with oral/dental traits and genotypes is a critical issue 
that must be addressed with concerted, international ef-
forts. Recognizing and adequately controlling for those 
known biases will help expand our understanding of 
the genetic underpinnings of oral and dental traits and 
ultimately help improve oral health and care. 
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