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Abstract: Confounding can make an association seem bigger when the true effect is smaller or vice-versa and it can also make it appear 
negative when it may actually be positive. In short, both the direction and the magnitude of an association are dependent on confounding. 
Therefore, understanding and adjusting for confounding in epidemiological research is central to addressing whether an observed association 
is causal or not. Moreover, unmeasured confounding in observational studies can give rise to biased estimates. Several techniques have 
been developed to account for bias and conducting sensitivity analysis. Using an hypothetical example this paper illustrates application of 
simple methods for conducting sensitivity analysis for unmeasured confounder(s). 
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Introduction

Consider scenario 1, comparing the incidence rate of tooth 
loss in children within a community in the year before 
and after the introduction of water supply fluoridation. 
The difference measured across different time points is 
not an effect measure but a measure of association, even 
though there may be a complete overlap of the children in 
both periods. So what exactly is the distinction between 
measure of effect and measure of association? 

A measure of effect compares what would happen 
to one population under two possible but distinct condi-
tions, where only one can occur (e.g., having cancer or 
not having cancer; we cannot observe both within the 
same person at the same time). Therefore the measure 
of effect is a theoretical concept insofar as it is logically 
impossible to observe the population under both the 
conditions at the same time; hence logically making it 
impossible to measure the effect directly. Conversely, a 
measure of association compares what happens in two 
distinct populations, although these populations may cor-
respond to the same population in different time periods. 

Given the observable nature of association measures, 
it is inviting to swap them for effect measures. It is even 
more natural to give causal explanations for observed 
associations in terms of obvious differences between 
populations being compared. However, this can be 
misleading. Let’s look at Scenario 1 again and analyse 
in detail how a measure of association translates into a  
measure of effect. The desired effect to be measured is 
of fluoridation on tooth loss. To measure this effect, we 
must contrast the actual rate under fluoridation with the 
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rate that would have occurred in the same period had 
fluoridation not been introduced. However, we cannot 
observe the latter because fluoridation was introduced, 
so the “non fluoridation” rate is the counterfactual. 
Suppose we exchange the rate in the time period be-
fore fluoridation, and also suppose that the rate before 
fluoridation equals the post fluoridation counterfactual 
rate; then the measure of association equals our desired 
measure of effect, and the before and after difference is 
un-confounded (i.e., confounding is not present in this 
difference). In other words, the exchangeability assump-
tion ensures that the counterfactual risk (marginal risk 
estimate) under exposure to fluoridation (“yes”, “no”) 
equals the observed risk (conditional risk estimate) among 
those who received fluoridation. It is in this situation that 
the causal risk equals the associational risk. However, 
if the two differences are not equal, then the measure 
of association is not equal to the measure of effect for 
which it is substituted. In this circumstance, the measure 
of association is confounded (Greenland, 1996). It should 
be noted that this definition of confounding is not only 
applicable to differences but also to rate ratios. 

Thus confounders can be defined as variables (e.g., 
exposures/treatments) that explain or produce part of 
the difference between the measure of association and 
the measure of effect that would be obtained with a 
counterfactual ideal (Hernan and Robins, 2020). Most 
epidemiological (including dental) research is concerned 
with adjusting or removing confounding. This is because 
confounding can both change the direction of the effect 
and also make a null effect causal or preventive (i.e., no 
causal relation between exposure and outcome) (Lash 
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and Fink, 2003; Lash et al., 2011). For this reason, an 
analysis of causal effect of an exposure on the occurrence 
of an outcome (e.g., disease) must account for confound-
ing of the crude association. When data on confounders 
is not available, then the investigator cannot control for 
the effect of confounding on study results through strati-
fication or regression (Greenland. 1996). Then one can 
ask questions like “What impact might the uncontrolled 
confounding have had on the results, both regarding the 
direction of the uncontrolled confounding and its expected 
magnitude?” In both cases, bias analysis can be a useful 
tool to explore the impact of the unknown/unmeasured 
confounder. The aim of this paper is to illustrate how 
to use the tools and conduct bias analysis related to 
unmeasured confounders in oral health. 

History and motivation for bias analysis due to 
unmeasured confounders

About half a century ago Cornfield (1959) and Bross 
(1966) proposed guidelines for determining whether an 
unmeasured binary covariate having specified properties 
could explain all of the apparent effect of treatment. 
That is, whether the treatment effect, after adjusting 
for unmeasured confounding, could be zero. Schles-
selman (1978) developed methods to assess the effects 
of unmeasured confounding. Rosenbaum and Rubin 
(1983) presented methods for assessing the bias due to 
unobserved binary covariates on an outcome. Despite 
these advances, none of these methods is widely taught 
in undergraduate or graduate courses in biostatistics and 
epidemiology. Even research published in peer-reviwed 
journals does not acknowledge/describe/discuss unmeas-
ured confounding, which perpetuates notion that there is 
seldom measurement error or unmeasured confounding 
in research. This complete absence of bias analysis may 
be due to lack of available software. 

Observational studies are being used in etiological, 
prediction (e.g., identification of high-risk groups), prog-
nostic and diagnostic research. Both clinical and public 
health researchers rely heavily on observational data. With 
the advent of large observational data from registries, 
electronic health record sample size is no longer an is-
sue, thus reducing random error. However, the role of 
systematic errors/bias remains important in observational 
studies (Sterne et al., 2016). Unmeasured confounding 
is one such source of systematic error, hence assessing 
bias due to unmeasured confounding should be part of 
routine data analysis. 

Notation:
Let’s suppose that we have a data set, D, that comprises 
exposure, X, outcome, Y, and some measured confounders, 
C and unmeasured confounders U. That is D = (C,X,Y,U). 
Usually U is not part of the observed D as they are un-
measured. Furthermore, let’s suppose that the parameter 
of interest is either the risk difference (RD) or risk ratio 
or relative risk (RR). Additionally, supposing that we 
have a good understanding on how the data has been 
generated, we can illustrate it using a directed acyclic 
graph (DAG), mapping the relation between confounders, 
exposures and outcomes, as shown in Figure 1. 

In Figure 1, circles denoting the nodes and arrows 
are known as the edges. You will note the arrows are 
pointing in one direction. C is a parent of both X and 
Y, Y is created by both X and C, and X is created by C. 
The confounder C can be a vector (e.g., age, gender…). 

Reasons for conducting bias analysis for 
unmeasured confounders

There could be several reasons, including: 
1. Understanding whether an unmeasured con-

founder could explain the obtained results, i.e., 
to understand if the required values of bias 
parameters are plausible characteristics of an 
unmeasured confounder.

2. Understanding if a combination of bias param-
eters exists that would reverse the direction of 
an observed true effect, i.e., to check if specific 
combination of bias parameters would make a 
causal association appear as a preventive associa-
tion or vice versa. 

If the investigator’s motivation is similar to (1), then 
the methods described in this paper are appropriate. 
However, if the interest is (2), then multidimensional 
techniques beyond the scope of this paper are required 
(Lash et al., 2011). 

Bias parameters 
In order to conduct bias analysis for unmeasured con-
founders, the investigator must have knowledge of two 
parameters:

1. The association between the confounder and the 
outcome among those who were not exposed. 

2. The prevalence of the unmeasured confounder 
in the source population. 

Figure 1: Directed acyclic graph mapping relations 
between confounders, exposures and outcomes.
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Implementation of simple bias analysis 
Following the works of Schlesselman (1978) and Bross 
(1966), we detail the method for exploring the effect 
of the unmeasured confounder. Given the assumptions 
about the distribution of the confounder in the popula-
tion and the effect of the confounder on the outcome in 
the absence of exposure, the link between the observed 
risk ratios and the risk ratio adjusted for an unmeasured 
confounder is described as 

 Once the marginal totals (N11, N10, N01, N00) are 
computed, then we can compute the information that is 
required to fill the cells (A1, B1, C1, D1, A0, B0, C0, D0). 
Before this we need to decide on the parameter of inter-
est (RR/RD). Let’s say we are interested in estimating 
risk ratio - defined as 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; (1) 

 
where 𝑅𝑅𝑅𝑅,-. is the risk ratio adjusted for unmeasured confounder, 𝑅𝑅𝑅𝑅/01 is the observed risk ratio 
computed without adjusting for unmeasured confounder, 𝑅𝑅𝑅𝑅34 is the risk ratio associating the unmeasured 
confounder with the outcome, 𝑝𝑝: and 𝑝𝑝6 are prevalence of unmeasured confounder in the exposed and the 
unexposed groups, mathematically 𝑝𝑝: = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 1), 𝑝𝑝6 = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 0). The 𝑅𝑅𝑅𝑅/01 can be 
estimated from a generalised linear model or even a simple cross tabulation. This method is selected, to 
illustrate that one does not require special software to carry out bias analysis. Using hypothetical (e.g., 
collected from systematic reviews) estimates of the three parameters (𝑅𝑅𝑅𝑅34, 𝑝𝑝6, 𝑝𝑝:), one can calculate the 
association between the exposure and the disease after accounting for the unmeasured confounder. In the 
above formula, we are also making an assumption that the effect of 𝑈𝑈 on 𝑌𝑌 does not differ within the levels 
of exposure/treatment.  
 
Alternatively if one is aware of the joint distribution of exposure/treatment, outcome and the unmeasured 
confounder (all measured as dichotomous variables), then the data could be arranged as shown in Table 1, 
and the adjusted risk ratio or risk difference can be computed as detailed below: 
 

[Insert Table 1 Here] 
 

With the assumptions about the bias parameters, the information in the cells for middle and right of the 
Table 1 can be calculated using the information from the first two columns of the Table 1. To get the 
information on 𝑛𝑛: and 𝑛𝑛@, and cells (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) one can perform a simple crosstabulation using observed 
data. Then make use of the hypothetical estimates of the prevalence of the confounder among the exposed 
(𝑝𝑝:) and prevalence of the confounder among the unmeasured (𝑝𝑝6) to estimate  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝:	and	𝑁𝑁:6 = 𝑛𝑛: − 𝑁𝑁:: 
and  
 

𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6	and	𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6:. 
 
 
Once the marginal totals (𝑁𝑁::, 𝑁𝑁:6, 𝑁𝑁6:, 𝑁𝑁66) are computed, then we can compute the information that is 
required to fill the cells (𝐴𝐴:, 𝐵𝐵:, 𝐶𝐶:, 𝐷𝐷:, 𝐴𝐴6, 𝐵𝐵6, 𝐶𝐶6, 𝐷𝐷6). Before this we need to decide on the parameter of 
interest (RR/RD). Let’s say we are interested in estimating risk ratio - defined as 
 

𝑅𝑅𝑅𝑅34 =

𝐵𝐵:
𝑁𝑁6:
𝐵𝐵6
𝑁𝑁66

 

 
but one can substitute  𝐵𝐵6 with (𝑏𝑏 − 𝐵𝐵:) and 𝑁𝑁66 with (𝑛𝑛@ − 𝑁𝑁6:) and rearrange the terms to compute 𝐵𝐵:, 
which is estimated as 
 

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
 

 
 
In the above equation 𝑅𝑅𝑅𝑅34 is an assumed value, 𝑁𝑁6:  is computed using above equations and 𝑛𝑛@	and b are 
estimated from data. Using all of this information now one can compute 𝐵𝐵: .  
Similarly the value of 𝐴𝐴: can be computed as  
 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁::𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
 

 

where RRadj is the adjusted risk ratio, RRobs is the observed 
risk ratio computed without adjusting for the unmeasured 
confounder, is the risk ratio associating the unmeasured 
confounder with the outcome, p1 and p0 are prevalence 
of the unmeasured confounder in the exposed and the 
unexposed groups. Mathematically, p1=P(U=1|X=1), 
p0=P(U=1|X=0). The RRobs can be estimated from a gen-
eralised linear model or even a simple cross tabulation. 
This method is selected, to illustrate that one does not 
require special software to carry out bias analysis. Using 
hypothetical (e.g., collected from systematic reviews) 
estimates of the three parameters (RRUY, p0, p1), one can 
calculate the association between the exposure and the 
disease after accounting for the unmeasured confounder. 
In the above formula, we are also making an assumption 
that the effect of on does not differ within the levels of 
exposure/treatment. 

Alternatively, if one is aware of the joint distribution 
of exposure/treatment, outcome and the unmeasured 
confounder (all measured as dichotomous variables), then 
the data could be arranged as shown in Table 1, and the 
adjusted risk ratio or risk difference can be computed 
as detailed below: 

Total U = 1 U = 0
Outcome X = 1 X = 0 X = 1 X = 0 X = 1 X = 0

Y = 1 a b A1 B1 A0 B0

Y = 0 c d C1 D1 C0 D0

n1 n2 N11 N01 N10 N00

Table 1: Association between exposure (X) and outcome (Y) 
stratified by the unmeasured confounder (U).

With the assumptions about the bias parameters, the 
information in the cells for the middle and right columns 
of Table 1 can be calculated using the information from 
the first two columns. To get the information on n1 and 
n2, and cells (a, b, c, d) one can perform a simple cross-
tabulation using observed data. Then use the hypothetical 
estimates of the prevalence of the confounder among the 
exposed (p1) and prevalence of the confounder among 
the unmeasured (p0) to estimate 

and 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; (1) 

 
where 𝑅𝑅𝑅𝑅,-. is the risk ratio adjusted for unmeasured confounder, 𝑅𝑅𝑅𝑅/01 is the observed risk ratio 
computed without adjusting for unmeasured confounder, 𝑅𝑅𝑅𝑅34 is the risk ratio associating the unmeasured 
confounder with the outcome, 𝑝𝑝: and 𝑝𝑝6 are prevalence of unmeasured confounder in the exposed and the 
unexposed groups, mathematically 𝑝𝑝: = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 1), 𝑝𝑝6 = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 0). The 𝑅𝑅𝑅𝑅/01 can be 
estimated from a generalised linear model or even a simple cross tabulation. This method is selected, to 
illustrate that one does not require special software to carry out bias analysis. Using hypothetical (e.g., 
collected from systematic reviews) estimates of the three parameters (𝑅𝑅𝑅𝑅34, 𝑝𝑝6, 𝑝𝑝:), one can calculate the 
association between the exposure and the disease after accounting for the unmeasured confounder. In the 
above formula, we are also making an assumption that the effect of 𝑈𝑈 on 𝑌𝑌 does not differ within the levels 
of exposure/treatment.  
 
Alternatively if one is aware of the joint distribution of exposure/treatment, outcome and the unmeasured 
confounder (all measured as dichotomous variables), then the data could be arranged as shown in Table 1, 
and the adjusted risk ratio or risk difference can be computed as detailed below: 
 

[Insert Table 1 Here] 
 

With the assumptions about the bias parameters, the information in the cells for middle and right of the 
Table 1 can be calculated using the information from the first two columns of the Table 1. To get the 
information on 𝑛𝑛: and 𝑛𝑛@, and cells (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) one can perform a simple crosstabulation using observed 
data. Then make use of the hypothetical estimates of the prevalence of the confounder among the exposed 
(𝑝𝑝:) and prevalence of the confounder among the unmeasured (𝑝𝑝6) to estimate  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝:	and	𝑁𝑁:6 = 𝑛𝑛: − 𝑁𝑁:: 
and  
 

𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6	and	𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6:. 
 
 
Once the marginal totals (𝑁𝑁::, 𝑁𝑁:6, 𝑁𝑁6:, 𝑁𝑁66) are computed, then we can compute the information that is 
required to fill the cells (𝐴𝐴:, 𝐵𝐵:, 𝐶𝐶:, 𝐷𝐷:, 𝐴𝐴6, 𝐵𝐵6, 𝐶𝐶6, 𝐷𝐷6). Before this we need to decide on the parameter of 
interest (RR/RD). Let’s say we are interested in estimating risk ratio - defined as 
 

𝑅𝑅𝑅𝑅34 =

𝐵𝐵:
𝑁𝑁6:
𝐵𝐵6
𝑁𝑁66

 

 
but one can substitute  𝐵𝐵6 with (𝑏𝑏 − 𝐵𝐵:) and 𝑁𝑁66 with (𝑛𝑛@ − 𝑁𝑁6:) and rearrange the terms to compute 𝐵𝐵:, 
which is estimated as 
 

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
 

 
 
In the above equation 𝑅𝑅𝑅𝑅34 is an assumed value, 𝑁𝑁6:  is computed using above equations and 𝑛𝑛@	and b are 
estimated from data. Using all of this information now one can compute 𝐵𝐵: .  
Similarly the value of 𝐴𝐴: can be computed as  
 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁::𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
 

 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; (1) 

 
where 𝑅𝑅𝑅𝑅,-. is the risk ratio adjusted for unmeasured confounder, 𝑅𝑅𝑅𝑅/01 is the observed risk ratio 
computed without adjusting for unmeasured confounder, 𝑅𝑅𝑅𝑅34 is the risk ratio associating the unmeasured 
confounder with the outcome, 𝑝𝑝: and 𝑝𝑝6 are prevalence of unmeasured confounder in the exposed and the 
unexposed groups, mathematically 𝑝𝑝: = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 1), 𝑝𝑝6 = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 0). The 𝑅𝑅𝑅𝑅/01 can be 
estimated from a generalised linear model or even a simple cross tabulation. This method is selected, to 
illustrate that one does not require special software to carry out bias analysis. Using hypothetical (e.g., 
collected from systematic reviews) estimates of the three parameters (𝑅𝑅𝑅𝑅34, 𝑝𝑝6, 𝑝𝑝:), one can calculate the 
association between the exposure and the disease after accounting for the unmeasured confounder. In the 
above formula, we are also making an assumption that the effect of 𝑈𝑈 on 𝑌𝑌 does not differ within the levels 
of exposure/treatment.  
 
Alternatively if one is aware of the joint distribution of exposure/treatment, outcome and the unmeasured 
confounder (all measured as dichotomous variables), then the data could be arranged as shown in Table 1, 
and the adjusted risk ratio or risk difference can be computed as detailed below: 
 

[Insert Table 1 Here] 
 

With the assumptions about the bias parameters, the information in the cells for middle and right of the 
Table 1 can be calculated using the information from the first two columns of the Table 1. To get the 
information on 𝑛𝑛: and 𝑛𝑛@, and cells (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) one can perform a simple crosstabulation using observed 
data. Then make use of the hypothetical estimates of the prevalence of the confounder among the exposed 
(𝑝𝑝:) and prevalence of the confounder among the unmeasured (𝑝𝑝6) to estimate  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝:	and	𝑁𝑁:6 = 𝑛𝑛: − 𝑁𝑁:: 
and  
 

𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6	and	𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6:. 
 
 
Once the marginal totals (𝑁𝑁::, 𝑁𝑁:6, 𝑁𝑁6:, 𝑁𝑁66) are computed, then we can compute the information that is 
required to fill the cells (𝐴𝐴:, 𝐵𝐵:, 𝐶𝐶:, 𝐷𝐷:, 𝐴𝐴6, 𝐵𝐵6, 𝐶𝐶6, 𝐷𝐷6). Before this we need to decide on the parameter of 
interest (RR/RD). Let’s say we are interested in estimating risk ratio - defined as 
 

𝑅𝑅𝑅𝑅34 =

𝐵𝐵:
𝑁𝑁6:
𝐵𝐵6
𝑁𝑁66

 

 
but one can substitute  𝐵𝐵6 with (𝑏𝑏 − 𝐵𝐵:) and 𝑁𝑁66 with (𝑛𝑛@ − 𝑁𝑁6:) and rearrange the terms to compute 𝐵𝐵:, 
which is estimated as 
 

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
 

 
 
In the above equation 𝑅𝑅𝑅𝑅34 is an assumed value, 𝑁𝑁6:  is computed using above equations and 𝑛𝑛@	and b are 
estimated from data. Using all of this information now one can compute 𝐵𝐵: .  
Similarly the value of 𝐴𝐴: can be computed as  
 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁::𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
 

 

 but one can substitute B0 with (b − B1) and N00 with 
(n2 − N01) and rearrange the terms to compute B1, which 
is estimated as 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; (1) 

 
where 𝑅𝑅𝑅𝑅,-. is the risk ratio adjusted for unmeasured confounder, 𝑅𝑅𝑅𝑅/01 is the observed risk ratio 
computed without adjusting for unmeasured confounder, 𝑅𝑅𝑅𝑅34 is the risk ratio associating the unmeasured 
confounder with the outcome, 𝑝𝑝: and 𝑝𝑝6 are prevalence of unmeasured confounder in the exposed and the 
unexposed groups, mathematically 𝑝𝑝: = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 1), 𝑝𝑝6 = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 0). The 𝑅𝑅𝑅𝑅/01 can be 
estimated from a generalised linear model or even a simple cross tabulation. This method is selected, to 
illustrate that one does not require special software to carry out bias analysis. Using hypothetical (e.g., 
collected from systematic reviews) estimates of the three parameters (𝑅𝑅𝑅𝑅34, 𝑝𝑝6, 𝑝𝑝:), one can calculate the 
association between the exposure and the disease after accounting for the unmeasured confounder. In the 
above formula, we are also making an assumption that the effect of 𝑈𝑈 on 𝑌𝑌 does not differ within the levels 
of exposure/treatment.  
 
Alternatively if one is aware of the joint distribution of exposure/treatment, outcome and the unmeasured 
confounder (all measured as dichotomous variables), then the data could be arranged as shown in Table 1, 
and the adjusted risk ratio or risk difference can be computed as detailed below: 
 

[Insert Table 1 Here] 
 

With the assumptions about the bias parameters, the information in the cells for middle and right of the 
Table 1 can be calculated using the information from the first two columns of the Table 1. To get the 
information on 𝑛𝑛: and 𝑛𝑛@, and cells (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) one can perform a simple crosstabulation using observed 
data. Then make use of the hypothetical estimates of the prevalence of the confounder among the exposed 
(𝑝𝑝:) and prevalence of the confounder among the unmeasured (𝑝𝑝6) to estimate  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝:	and	𝑁𝑁:6 = 𝑛𝑛: − 𝑁𝑁:: 
and  
 

𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6	and	𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6:. 
 
 
Once the marginal totals (𝑁𝑁::, 𝑁𝑁:6, 𝑁𝑁6:, 𝑁𝑁66) are computed, then we can compute the information that is 
required to fill the cells (𝐴𝐴:, 𝐵𝐵:, 𝐶𝐶:, 𝐷𝐷:, 𝐴𝐴6, 𝐵𝐵6, 𝐶𝐶6, 𝐷𝐷6). Before this we need to decide on the parameter of 
interest (RR/RD). Let’s say we are interested in estimating risk ratio - defined as 
 

𝑅𝑅𝑅𝑅34 =

𝐵𝐵:
𝑁𝑁6:
𝐵𝐵6
𝑁𝑁66

 

 
but one can substitute  𝐵𝐵6 with (𝑏𝑏 − 𝐵𝐵:) and 𝑁𝑁66 with (𝑛𝑛@ − 𝑁𝑁6:) and rearrange the terms to compute 𝐵𝐵:, 
which is estimated as 
 

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
 

 
 
In the above equation 𝑅𝑅𝑅𝑅34 is an assumed value, 𝑁𝑁6:  is computed using above equations and 𝑛𝑛@	and b are 
estimated from data. Using all of this information now one can compute 𝐵𝐵: .  
Similarly the value of 𝐴𝐴: can be computed as  
 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁::𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
 

 

 In the above equation RRUY is an assumed value, 
N01 is computed using above equations and n2 and b are 
estimated from data. Using all of this information now 
one can compute B1. 

Similarly, the value of A1 can be computed as 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; (1) 

 
where 𝑅𝑅𝑅𝑅,-. is the risk ratio adjusted for unmeasured confounder, 𝑅𝑅𝑅𝑅/01 is the observed risk ratio 
computed without adjusting for unmeasured confounder, 𝑅𝑅𝑅𝑅34 is the risk ratio associating the unmeasured 
confounder with the outcome, 𝑝𝑝: and 𝑝𝑝6 are prevalence of unmeasured confounder in the exposed and the 
unexposed groups, mathematically 𝑝𝑝: = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 1), 𝑝𝑝6 = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 0). The 𝑅𝑅𝑅𝑅/01 can be 
estimated from a generalised linear model or even a simple cross tabulation. This method is selected, to 
illustrate that one does not require special software to carry out bias analysis. Using hypothetical (e.g., 
collected from systematic reviews) estimates of the three parameters (𝑅𝑅𝑅𝑅34, 𝑝𝑝6, 𝑝𝑝:), one can calculate the 
association between the exposure and the disease after accounting for the unmeasured confounder. In the 
above formula, we are also making an assumption that the effect of 𝑈𝑈 on 𝑌𝑌 does not differ within the levels 
of exposure/treatment.  
 
Alternatively if one is aware of the joint distribution of exposure/treatment, outcome and the unmeasured 
confounder (all measured as dichotomous variables), then the data could be arranged as shown in Table 1, 
and the adjusted risk ratio or risk difference can be computed as detailed below: 
 

[Insert Table 1 Here] 
 

With the assumptions about the bias parameters, the information in the cells for middle and right of the 
Table 1 can be calculated using the information from the first two columns of the Table 1. To get the 
information on 𝑛𝑛: and 𝑛𝑛@, and cells (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) one can perform a simple crosstabulation using observed 
data. Then make use of the hypothetical estimates of the prevalence of the confounder among the exposed 
(𝑝𝑝:) and prevalence of the confounder among the unmeasured (𝑝𝑝6) to estimate  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝:	and	𝑁𝑁:6 = 𝑛𝑛: − 𝑁𝑁:: 
and  
 

𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6	and	𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6:. 
 
 
Once the marginal totals (𝑁𝑁::, 𝑁𝑁:6, 𝑁𝑁6:, 𝑁𝑁66) are computed, then we can compute the information that is 
required to fill the cells (𝐴𝐴:, 𝐵𝐵:, 𝐶𝐶:, 𝐷𝐷:, 𝐴𝐴6, 𝐵𝐵6, 𝐶𝐶6, 𝐷𝐷6). Before this we need to decide on the parameter of 
interest (RR/RD). Let’s say we are interested in estimating risk ratio - defined as 
 

𝑅𝑅𝑅𝑅34 =

𝐵𝐵:
𝑁𝑁6:
𝐵𝐵6
𝑁𝑁66

 

 
but one can substitute  𝐵𝐵6 with (𝑏𝑏 − 𝐵𝐵:) and 𝑁𝑁66 with (𝑛𝑛@ − 𝑁𝑁6:) and rearrange the terms to compute 𝐵𝐵:, 
which is estimated as 
 

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
 

 
 
In the above equation 𝑅𝑅𝑅𝑅34 is an assumed value, 𝑁𝑁6:  is computed using above equations and 𝑛𝑛@	and b are 
estimated from data. Using all of this information now one can compute 𝐵𝐵: .  
Similarly the value of 𝐴𝐴: can be computed as  
 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁::𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
 

  Once the cell information (A1 and B1) is estimated, 
then the adjusted risk ratio can be computed using 
Equation 1. Information on A1, A2, B1, B2, D1 and D2 are 
computed to complete the table. These values will not 
be used here. However, if one is interested in computing 
the odds ratio then these are required. 

Risk Difference 

When the parameter of interest is RD, the method for bias 
analysis (simple version) is detailed below. Similar to the 
risk ratio, we require information on the prevalence of the 
confounder in both the exposed and unexposed groups. 
One also needs to know the risk difference associating 
the confounder with the outcome (RDUY). Computation 
of N11 and N10 and N01 and N00 is similar to how they 
were described in the risk ratio, but determination of the 
values A1, B1, A2 and B2 is done differently. 

 Theoretically, the risk difference is computed as 
(Lash, Fox and Fink, 2011; Lash and Fink 2003); 

Risk Difference 
 
Similarly, when the parameter of interest is RD, the method for bias analysis (simple version) is detailed 
below. Similar to the risk ratio, we require information on the prevalence of the confounder in both the 
exposed and unexposed groups. One also needs to know the risk difference associating the confounder with 
the outcome (𝑅𝑅𝐷𝐷34). Computation of 𝑁𝑁:: and 𝑁𝑁:6 and 𝑁𝑁6: and 𝑁𝑁66 is similar to how they were described 
in the risk ratio but determination of the values 𝐴𝐴:, 𝐵𝐵:, 𝐴𝐴@ and 𝐵𝐵@ is done differently.  
 
 Theoretically the risk difference is computed as (Lash, Fox and Fink, 2011; Lash and Fink 2003); 

𝑅𝑅𝐷𝐷34 =
𝐵𝐵:
𝑁𝑁6:

−
𝐵𝐵6
𝑁𝑁66

 

 
However what we know from Table 1 is 𝐵𝐵6 = 𝑏𝑏 − 𝐵𝐵: and 𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6: now substituting these values 
in the above equation and rearranging them one can compute the required value of 𝐵𝐵:	as 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
 

 
Similarly, the value for 𝐴𝐴: can be computed as 
 

𝐴𝐴: =
𝑅𝑅𝐷𝐷34𝑛𝑛:(𝑛𝑛: − 𝑁𝑁::) + 𝑎𝑎𝑁𝑁::

𝑛𝑛:
 

 
Now using these newly computed values of the cells the adjusted risk difference can be computed as 
 

𝑅𝑅𝐷𝐷,-. = 𝑅𝑅𝐷𝐷/01 + (𝑅𝑅𝐷𝐷34)(𝑝𝑝6 − 𝑝𝑝:) 
 
 
Example 
 
Using hypothetical data, and the above method I demonstrate how one could estimate the adjusted risk ratio 
and risk difference for unmeasured confounding. In here I do not use the example in scenario 1 but use a 
different example which considers the individual level aspects.  
 
Suppose the research interest is in knowing the risk of sugar consumption on tooth decay. Using the 
collected information we estimate the risk ratio between sugar consumption (SC) and tooth decay (TD), 
however we now want to adjust this risk for unmeasured confounder, e.g., oral health literacy (OHL). The 
user-supplied values for bias parameters is summarised in Table 2. Using this new information let’s see 
how we can adjust the observed effect of SC on TD. 

[Insert Table 2 Here] 
 

The left side of Table 3 shows the observed data associating SC (X) on TD (Y).  
 

[Insert Table 3 here] 
 
The crude data and assumptions about the bias parameters, in conjunction with the equations shown in 
previous section, provide a solution to allow stratification by oral health literacy. The crude risk ratio can 
be computed from Table 3 as 1.84 ((110/240)/(200/800)). To get the adjusted estimates we start with solving 
for 𝑁𝑁:: and 𝑁𝑁6: using the prevalence values stated in Table 2.  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝: = 240 ∗ 0.35 = 84 
𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6 = 800 ∗ 0.75 = 600 

Then for 𝑁𝑁:6 and 𝑁𝑁66 
𝑁𝑁:6 = 240 − 84 = 156 

			𝑁𝑁66 = 800 − 600 = 200	 
 

However we know from Table 1 that B0 = b − B1 
and N00 = n2 − N01 now substituting these values in the 
above equation and rearranging them one can compute 
the required value of B1 as 

Risk Difference 
 
Similarly, when the parameter of interest is RD, the method for bias analysis (simple version) is detailed 
below. Similar to the risk ratio, we require information on the prevalence of the confounder in both the 
exposed and unexposed groups. One also needs to know the risk difference associating the confounder with 
the outcome (𝑅𝑅𝐷𝐷34). Computation of 𝑁𝑁:: and 𝑁𝑁:6 and 𝑁𝑁6: and 𝑁𝑁66 is similar to how they were described 
in the risk ratio but determination of the values 𝐴𝐴:, 𝐵𝐵:, 𝐴𝐴@ and 𝐵𝐵@ is done differently.  
 
 Theoretically the risk difference is computed as (Lash, Fox and Fink, 2011; Lash and Fink 2003); 

𝑅𝑅𝐷𝐷34 =
𝐵𝐵:
𝑁𝑁6:

−
𝐵𝐵6
𝑁𝑁66

 

 
However what we know from Table 1 is 𝐵𝐵6 = 𝑏𝑏 − 𝐵𝐵: and 𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6: now substituting these values 
in the above equation and rearranging them one can compute the required value of 𝐵𝐵:	as 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
 

 
Similarly, the value for 𝐴𝐴: can be computed as 
 

𝐴𝐴: =
𝑅𝑅𝐷𝐷34𝑛𝑛:(𝑛𝑛: − 𝑁𝑁::) + 𝑎𝑎𝑁𝑁::

𝑛𝑛:
 

 
Now using these newly computed values of the cells the adjusted risk difference can be computed as 
 

𝑅𝑅𝐷𝐷,-. = 𝑅𝑅𝐷𝐷/01 + (𝑅𝑅𝐷𝐷34)(𝑝𝑝6 − 𝑝𝑝:) 
 
 
Example 
 
Using hypothetical data, and the above method I demonstrate how one could estimate the adjusted risk ratio 
and risk difference for unmeasured confounding. In here I do not use the example in scenario 1 but use a 
different example which considers the individual level aspects.  
 
Suppose the research interest is in knowing the risk of sugar consumption on tooth decay. Using the 
collected information we estimate the risk ratio between sugar consumption (SC) and tooth decay (TD), 
however we now want to adjust this risk for unmeasured confounder, e.g., oral health literacy (OHL). The 
user-supplied values for bias parameters is summarised in Table 2. Using this new information let’s see 
how we can adjust the observed effect of SC on TD. 

[Insert Table 2 Here] 
 

The left side of Table 3 shows the observed data associating SC (X) on TD (Y).  
 

[Insert Table 3 here] 
 
The crude data and assumptions about the bias parameters, in conjunction with the equations shown in 
previous section, provide a solution to allow stratification by oral health literacy. The crude risk ratio can 
be computed from Table 3 as 1.84 ((110/240)/(200/800)). To get the adjusted estimates we start with solving 
for 𝑁𝑁:: and 𝑁𝑁6: using the prevalence values stated in Table 2.  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝: = 240 ∗ 0.35 = 84 
𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6 = 800 ∗ 0.75 = 600 

Then for 𝑁𝑁:6 and 𝑁𝑁66 
𝑁𝑁:6 = 240 − 84 = 156 

			𝑁𝑁66 = 800 − 600 = 200	 
 

 Similarly, the value for can be computed as 

Risk Difference 
 
Similarly, when the parameter of interest is RD, the method for bias analysis (simple version) is detailed 
below. Similar to the risk ratio, we require information on the prevalence of the confounder in both the 
exposed and unexposed groups. One also needs to know the risk difference associating the confounder with 
the outcome (𝑅𝑅𝐷𝐷34). Computation of 𝑁𝑁:: and 𝑁𝑁:6 and 𝑁𝑁6: and 𝑁𝑁66 is similar to how they were described 
in the risk ratio but determination of the values 𝐴𝐴:, 𝐵𝐵:, 𝐴𝐴@ and 𝐵𝐵@ is done differently.  
 
 Theoretically the risk difference is computed as (Lash, Fox and Fink, 2011; Lash and Fink 2003); 

𝑅𝑅𝐷𝐷34 =
𝐵𝐵:
𝑁𝑁6:

−
𝐵𝐵6
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However what we know from Table 1 is 𝐵𝐵6 = 𝑏𝑏 − 𝐵𝐵: and 𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6: now substituting these values 
in the above equation and rearranging them one can compute the required value of 𝐵𝐵:	as 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
 

 
Similarly, the value for 𝐴𝐴: can be computed as 
 

𝐴𝐴: =
𝑅𝑅𝐷𝐷34𝑛𝑛:(𝑛𝑛: − 𝑁𝑁::) + 𝑎𝑎𝑁𝑁::

𝑛𝑛:
 

 
Now using these newly computed values of the cells the adjusted risk difference can be computed as 
 

𝑅𝑅𝐷𝐷,-. = 𝑅𝑅𝐷𝐷/01 + (𝑅𝑅𝐷𝐷34)(𝑝𝑝6 − 𝑝𝑝:) 
 
 
Example 
 
Using hypothetical data, and the above method I demonstrate how one could estimate the adjusted risk ratio 
and risk difference for unmeasured confounding. In here I do not use the example in scenario 1 but use a 
different example which considers the individual level aspects.  
 
Suppose the research interest is in knowing the risk of sugar consumption on tooth decay. Using the 
collected information we estimate the risk ratio between sugar consumption (SC) and tooth decay (TD), 
however we now want to adjust this risk for unmeasured confounder, e.g., oral health literacy (OHL). The 
user-supplied values for bias parameters is summarised in Table 2. Using this new information let’s see 
how we can adjust the observed effect of SC on TD. 

[Insert Table 2 Here] 
 

The left side of Table 3 shows the observed data associating SC (X) on TD (Y).  
 

[Insert Table 3 here] 
 
The crude data and assumptions about the bias parameters, in conjunction with the equations shown in 
previous section, provide a solution to allow stratification by oral health literacy. The crude risk ratio can 
be computed from Table 3 as 1.84 ((110/240)/(200/800)). To get the adjusted estimates we start with solving 
for 𝑁𝑁:: and 𝑁𝑁6: using the prevalence values stated in Table 2.  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝: = 240 ∗ 0.35 = 84 
𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6 = 800 ∗ 0.75 = 600 

Then for 𝑁𝑁:6 and 𝑁𝑁66 
𝑁𝑁:6 = 240 − 84 = 156 

			𝑁𝑁66 = 800 − 600 = 200	 
 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; (1) 

 
where 𝑅𝑅𝑅𝑅,-. is the risk ratio adjusted for unmeasured confounder, 𝑅𝑅𝑅𝑅/01 is the observed risk ratio 
computed without adjusting for unmeasured confounder, 𝑅𝑅𝑅𝑅34 is the risk ratio associating the unmeasured 
confounder with the outcome, 𝑝𝑝: and 𝑝𝑝6 are prevalence of unmeasured confounder in the exposed and the 
unexposed groups, mathematically 𝑝𝑝: = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 1), 𝑝𝑝6 = 𝑃𝑃(𝑈𝑈 = 1|𝑋𝑋 = 0). The 𝑅𝑅𝑅𝑅/01 can be 
estimated from a generalised linear model or even a simple cross tabulation. This method is selected, to 
illustrate that one does not require special software to carry out bias analysis. Using hypothetical (e.g., 
collected from systematic reviews) estimates of the three parameters (𝑅𝑅𝑅𝑅34, 𝑝𝑝6, 𝑝𝑝:), one can calculate the 
association between the exposure and the disease after accounting for the unmeasured confounder. In the 
above formula, we are also making an assumption that the effect of 𝑈𝑈 on 𝑌𝑌 does not differ within the levels 
of exposure/treatment.  
 
Alternatively if one is aware of the joint distribution of exposure/treatment, outcome and the unmeasured 
confounder (all measured as dichotomous variables), then the data could be arranged as shown in Table 1, 
and the adjusted risk ratio or risk difference can be computed as detailed below: 
 

[Insert Table 1 Here] 
 

With the assumptions about the bias parameters, the information in the cells for middle and right of the 
Table 1 can be calculated using the information from the first two columns of the Table 1. To get the 
information on 𝑛𝑛: and 𝑛𝑛@, and cells (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) one can perform a simple crosstabulation using observed 
data. Then make use of the hypothetical estimates of the prevalence of the confounder among the exposed 
(𝑝𝑝:) and prevalence of the confounder among the unmeasured (𝑝𝑝6) to estimate  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝:	and	𝑁𝑁:6 = 𝑛𝑛: − 𝑁𝑁:: 
and  
 

𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6	and	𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6:. 
 
 
Once the marginal totals (𝑁𝑁::, 𝑁𝑁:6, 𝑁𝑁6:, 𝑁𝑁66) are computed, then we can compute the information that is 
required to fill the cells (𝐴𝐴:, 𝐵𝐵:, 𝐶𝐶:, 𝐷𝐷:, 𝐴𝐴6, 𝐵𝐵6, 𝐶𝐶6, 𝐷𝐷6). Before this we need to decide on the parameter of 
interest (RR/RD). Let’s say we are interested in estimating risk ratio - defined as 
 

𝑅𝑅𝑅𝑅34 =

𝐵𝐵:
𝑁𝑁6:
𝐵𝐵6
𝑁𝑁66

 

 
but one can substitute  𝐵𝐵6 with (𝑏𝑏 − 𝐵𝐵:) and 𝑁𝑁66 with (𝑛𝑛@ − 𝑁𝑁6:) and rearrange the terms to compute 𝐵𝐵:, 
which is estimated as 
 

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
 

 
 
In the above equation 𝑅𝑅𝑅𝑅34 is an assumed value, 𝑁𝑁6:  is computed using above equations and 𝑛𝑛@	and b are 
estimated from data. Using all of this information now one can compute 𝐵𝐵: .  
Similarly the value of 𝐴𝐴: can be computed as  
 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁::𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
 

 

 Now using these newly computed values of the cells, 
the adjusted risk difference can be computed as 

Risk Difference 
 
Similarly, when the parameter of interest is RD, the method for bias analysis (simple version) is detailed 
below. Similar to the risk ratio, we require information on the prevalence of the confounder in both the 
exposed and unexposed groups. One also needs to know the risk difference associating the confounder with 
the outcome (𝑅𝑅𝐷𝐷34). Computation of 𝑁𝑁:: and 𝑁𝑁:6 and 𝑁𝑁6: and 𝑁𝑁66 is similar to how they were described 
in the risk ratio but determination of the values 𝐴𝐴:, 𝐵𝐵:, 𝐴𝐴@ and 𝐵𝐵@ is done differently.  
 
 Theoretically the risk difference is computed as (Lash, Fox and Fink, 2011; Lash and Fink 2003); 

𝑅𝑅𝐷𝐷34 =
𝐵𝐵:
𝑁𝑁6:

−
𝐵𝐵6
𝑁𝑁66

 

 
However what we know from Table 1 is 𝐵𝐵6 = 𝑏𝑏 − 𝐵𝐵: and 𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6: now substituting these values 
in the above equation and rearranging them one can compute the required value of 𝐵𝐵:	as 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
 

 
Similarly, the value for 𝐴𝐴: can be computed as 
 

𝐴𝐴: =
𝑅𝑅𝐷𝐷34𝑛𝑛:(𝑛𝑛: − 𝑁𝑁::) + 𝑎𝑎𝑁𝑁::

𝑛𝑛:
 

 
Now using these newly computed values of the cells the adjusted risk difference can be computed as 
 

𝑅𝑅𝐷𝐷,-. = 𝑅𝑅𝐷𝐷/01 + (𝑅𝑅𝐷𝐷34)(𝑝𝑝6 − 𝑝𝑝:) 
 
 
Example 
 
Using hypothetical data, and the above method I demonstrate how one could estimate the adjusted risk ratio 
and risk difference for unmeasured confounding. In here I do not use the example in scenario 1 but use a 
different example which considers the individual level aspects.  
 
Suppose the research interest is in knowing the risk of sugar consumption on tooth decay. Using the 
collected information we estimate the risk ratio between sugar consumption (SC) and tooth decay (TD), 
however we now want to adjust this risk for unmeasured confounder, e.g., oral health literacy (OHL). The 
user-supplied values for bias parameters is summarised in Table 2. Using this new information let’s see 
how we can adjust the observed effect of SC on TD. 

[Insert Table 2 Here] 
 

The left side of Table 3 shows the observed data associating SC (X) on TD (Y).  
 

[Insert Table 3 here] 
 
The crude data and assumptions about the bias parameters, in conjunction with the equations shown in 
previous section, provide a solution to allow stratification by oral health literacy. The crude risk ratio can 
be computed from Table 3 as 1.84 ((110/240)/(200/800)). To get the adjusted estimates we start with solving 
for 𝑁𝑁:: and 𝑁𝑁6: using the prevalence values stated in Table 2.  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝: = 240 ∗ 0.35 = 84 
𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6 = 800 ∗ 0.75 = 600 

Then for 𝑁𝑁:6 and 𝑁𝑁66 
𝑁𝑁:6 = 240 − 84 = 156 

			𝑁𝑁66 = 800 − 600 = 200	 
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 Example 
Using hypothetical data, and the above method I dem-
onstrate how one could estimate the adjusted risk ratio 
and risk difference for unmeasured confounding. I use 
a different example that considers the individual level 
aspects. 

Suppose the interest is in knowing the risk of sugar 
consumption on tooth decay. Using collected information 
we estimate the risk ratio between sugar consumption 
(SC) and tooth decay (TD), but want to adjust this risk 
for an unmeasured confounder, e.g., oral health literacy 
(OHL). The user-supplied values for bias parameters are 
summarised in Table 2. Using this new information let’s 
see how we can adjust the observed effect of SC on TD.

Bias 
Parameter Description

User supplied 
values to the bias 

parameter

RRUY

Association between good 
oral health literacy and 

dental caries
1.5

p1

Prevalence of good oral 
health literacy among 

people with tooth decay
0.35

p0

Prevalence of good oral 
health literacy among 

people with no tooth decay
0.75

Table 2: Bias parameters for simple bias analysis 
of the association between sugar consumption (X) 
and tooth decay (Y) stratified by an unmeasured 
confounder U (oral health literacy).

The left side of Table 3 shows the observed data 
associating SC (X) on TD (Y). 

Total U = 1 U = 0
Outcome X = 1 X = 0 X = 1 X = 0 X = 1 X = 0
Y = 1 110 200 49.15 163.64 60.85 36.36
Y = 0 130 600 34.85 436.36 95.15 163.64

240 800 84 600 156 200

Table 3: Hypothetical Data on the relationship between 
sugar consumption and tooth decay stratified by oral health 
literacy (unmeasured confounder). Crude (left two columns) 
and estimated data (remaining four columns).

The crude data and assumptions about the bias pa-
rameters, in conjunction with the equations shown in 
previous section, provide a solution to allow stratifica-
tion by oral health literacy. The crude risk ratio can be 
computed from Table 3 as 1.84 ((110/240)/(200/800)). To 
get the adjusted estimates we start with solving for N11 
and N01 using the prevalence values stated in Table 2. 

Risk Difference 
 
Similarly, when the parameter of interest is RD, the method for bias analysis (simple version) is detailed 
below. Similar to the risk ratio, we require information on the prevalence of the confounder in both the 
exposed and unexposed groups. One also needs to know the risk difference associating the confounder with 
the outcome (𝑅𝑅𝐷𝐷34). Computation of 𝑁𝑁:: and 𝑁𝑁:6 and 𝑁𝑁6: and 𝑁𝑁66 is similar to how they were described 
in the risk ratio but determination of the values 𝐴𝐴:, 𝐵𝐵:, 𝐴𝐴@ and 𝐵𝐵@ is done differently.  
 
 Theoretically the risk difference is computed as (Lash, Fox and Fink, 2011; Lash and Fink 2003); 

𝑅𝑅𝐷𝐷34 =
𝐵𝐵:
𝑁𝑁6:

−
𝐵𝐵6
𝑁𝑁66

 

 
However what we know from Table 1 is 𝐵𝐵6 = 𝑏𝑏 − 𝐵𝐵: and 𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6: now substituting these values 
in the above equation and rearranging them one can compute the required value of 𝐵𝐵:	as 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
 

 
Similarly, the value for 𝐴𝐴: can be computed as 
 

𝐴𝐴: =
𝑅𝑅𝐷𝐷34𝑛𝑛:(𝑛𝑛: − 𝑁𝑁::) + 𝑎𝑎𝑁𝑁::

𝑛𝑛:
 

 
Now using these newly computed values of the cells the adjusted risk difference can be computed as 
 

𝑅𝑅𝐷𝐷,-. = 𝑅𝑅𝐷𝐷/01 + (𝑅𝑅𝐷𝐷34)(𝑝𝑝6 − 𝑝𝑝:) 
 
 
Example 
 
Using hypothetical data, and the above method I demonstrate how one could estimate the adjusted risk ratio 
and risk difference for unmeasured confounding. In here I do not use the example in scenario 1 but use a 
different example which considers the individual level aspects.  
 
Suppose the research interest is in knowing the risk of sugar consumption on tooth decay. Using the 
collected information we estimate the risk ratio between sugar consumption (SC) and tooth decay (TD), 
however we now want to adjust this risk for unmeasured confounder, e.g., oral health literacy (OHL). The 
user-supplied values for bias parameters is summarised in Table 2. Using this new information let’s see 
how we can adjust the observed effect of SC on TD. 

[Insert Table 2 Here] 
 

The left side of Table 3 shows the observed data associating SC (X) on TD (Y).  
 

[Insert Table 3 here] 
 
The crude data and assumptions about the bias parameters, in conjunction with the equations shown in 
previous section, provide a solution to allow stratification by oral health literacy. The crude risk ratio can 
be computed from Table 3 as 1.84 ((110/240)/(200/800)). To get the adjusted estimates we start with solving 
for 𝑁𝑁:: and 𝑁𝑁6: using the prevalence values stated in Table 2.  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝: = 240 ∗ 0.35 = 84 
𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6 = 800 ∗ 0.75 = 600 

Then for 𝑁𝑁:6 and 𝑁𝑁66 
𝑁𝑁:6 = 240 − 84 = 156 

			𝑁𝑁66 = 800 − 600 = 200	 
 

 The relation between oral health literacy and tooth 
decay can be used to solve the cell values of the strati-
fied Table 2 

 Then for N10 and N00

Risk Difference 
 
Similarly, when the parameter of interest is RD, the method for bias analysis (simple version) is detailed 
below. Similar to the risk ratio, we require information on the prevalence of the confounder in both the 
exposed and unexposed groups. One also needs to know the risk difference associating the confounder with 
the outcome (𝑅𝑅𝐷𝐷34). Computation of 𝑁𝑁:: and 𝑁𝑁:6 and 𝑁𝑁6: and 𝑁𝑁66 is similar to how they were described 
in the risk ratio but determination of the values 𝐴𝐴:, 𝐵𝐵:, 𝐴𝐴@ and 𝐵𝐵@ is done differently.  
 
 Theoretically the risk difference is computed as (Lash, Fox and Fink, 2011; Lash and Fink 2003); 

𝑅𝑅𝐷𝐷34 =
𝐵𝐵:
𝑁𝑁6:

−
𝐵𝐵6
𝑁𝑁66

 

 
However what we know from Table 1 is 𝐵𝐵6 = 𝑏𝑏 − 𝐵𝐵: and 𝑁𝑁66 = 𝑛𝑛@ − 𝑁𝑁6: now substituting these values 
in the above equation and rearranging them one can compute the required value of 𝐵𝐵:	as 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
 

 
Similarly, the value for 𝐴𝐴: can be computed as 
 

𝐴𝐴: =
𝑅𝑅𝐷𝐷34𝑛𝑛:(𝑛𝑛: − 𝑁𝑁::) + 𝑎𝑎𝑁𝑁::

𝑛𝑛:
 

 
Now using these newly computed values of the cells the adjusted risk difference can be computed as 
 

𝑅𝑅𝐷𝐷,-. = 𝑅𝑅𝐷𝐷/01 + (𝑅𝑅𝐷𝐷34)(𝑝𝑝6 − 𝑝𝑝:) 
 
 
Example 
 
Using hypothetical data, and the above method I demonstrate how one could estimate the adjusted risk ratio 
and risk difference for unmeasured confounding. In here I do not use the example in scenario 1 but use a 
different example which considers the individual level aspects.  
 
Suppose the research interest is in knowing the risk of sugar consumption on tooth decay. Using the 
collected information we estimate the risk ratio between sugar consumption (SC) and tooth decay (TD), 
however we now want to adjust this risk for unmeasured confounder, e.g., oral health literacy (OHL). The 
user-supplied values for bias parameters is summarised in Table 2. Using this new information let’s see 
how we can adjust the observed effect of SC on TD. 

[Insert Table 2 Here] 
 

The left side of Table 3 shows the observed data associating SC (X) on TD (Y).  
 

[Insert Table 3 here] 
 
The crude data and assumptions about the bias parameters, in conjunction with the equations shown in 
previous section, provide a solution to allow stratification by oral health literacy. The crude risk ratio can 
be computed from Table 3 as 1.84 ((110/240)/(200/800)). To get the adjusted estimates we start with solving 
for 𝑁𝑁:: and 𝑁𝑁6: using the prevalence values stated in Table 2.  
 

𝑁𝑁:: = 𝑛𝑛: ∗ 𝑝𝑝: = 240 ∗ 0.35 = 84 
𝑁𝑁6: = 𝑛𝑛@ ∗ 𝑝𝑝6 = 800 ∗ 0.75 = 600 

Then for 𝑁𝑁:6 and 𝑁𝑁66 
𝑁𝑁:6 = 240 − 84 = 156 

			𝑁𝑁66 = 800 − 600 = 200	 
 

The relation between oral health literacy and tooth decay can be used to solve the cell values of the stratified 
Table 2 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁:: ∗ 𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
=

1.5 ∗ 84 ∗ 110
1.5 ∗ 84 + 240 − 84 = 49.15 

And  

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
=

1.5 ∗ 600 ∗ 200
1.5 ∗ 600 + 800 − 600 = 163.64 

 
The estimated, stratified data, allows calculation of the adjusted association between SC and TD for 
confounding by OHL. After adjusting for OHL, the standardised relative risk can be estimated as 
 

𝑅𝑅𝑅𝑅,-. =
110

84 ∗ U163.64600 V + U36.36200 V ∗ 156
= 2.15 

 
Let’s use the formula and compute the adjusted risk ratio 
 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; = 1.84 ∗ 2
1.5 ∗ 0.75 + (1 − 0.75)
1.5 ∗ 0.35 + (1 − 0.35); = 2.15 

 
We can now see the impact of the bias caused by unmeasured confounding. The adjusted risk ratio is higher 
than the observed risk ratio. In this example, the risk was underestimated when the unmeasured 
confounding was not considered. One can argue that the estimates from bias analysis are as good as the 
values assigned to the bias parameters. While true, the point to emphasise here is that presenting the results 
from a quantitative bias analysis is an improvement over intuitive estimates of the impact of unmeasured 
confounding because the assumptions are explicit and the impacts given those assumptions can be 
quantified. Additionally, bias analysis allows evaluation of the plausibility of competing evaluations for the 
observed associations. As seen from the above example, bias analysis can provide justification for 
collection of new information if the gain in information due to unmeasured confounding is expected to be 
marginal. However, this must not lead to conclusions such as absence of bias implies no new information 
is required. If one does not want to limit to single value of the bias parameters, then one can also define 
multiple values for any of the three parameters. For example, computing the adjusted risk ratio for a 
combination of values of 𝑝𝑝6 and 𝑝𝑝: fixing	𝑅𝑅𝑅𝑅34, which can also be done using the above method (see R 
code in web appendix). Results then can be presented as shown in Figure 2. 
 

[Insert Figure 2 here] 
 

While the method described here is simple and allows to explore the impact of unmeasured confounder, it 
is limited by the accuracy of the values assigned to parameters and the knowledge of unmeasured/unknown 
confounders. Moreover the bias analysis presented above was carried out under the assumption that there 
was only a single unmeasured confounder. In reality, there can be several confounders; in such cases this 
method is not applicable and one must use more advanced methods such as probabilistic bias analysis.  
 
Risk Difference 
 
Here I demonstrate the conduct of bias analysis for risk difference.  We still use the information presented 
Table 3 for the first two columns.  

[Insert Table 4 Here] 
 
Values of 𝑁𝑁::, 𝑁𝑁6:, 𝑁𝑁:6 and 𝑁𝑁66 are computed as described above for risk ratio. However for computing 
the values of  𝐴𝐴: and 𝐵𝐵:  we need the risk difference values of bias parameter and the values of prevalence. 
These are assumed to be  𝑅𝑅𝐷𝐷34 = 0.15, 𝑝𝑝6 = 0.75 and 𝑝𝑝: = 0.35. 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
=
0.15 ∗ 800 ∗ (800 − 600) + 200 ∗ 600

800 = 180 

 
Similarly the value for 𝐴𝐴: can be computed as 

And 

The relation between oral health literacy and tooth decay can be used to solve the cell values of the stratified 
Table 2 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁:: ∗ 𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
=

1.5 ∗ 84 ∗ 110
1.5 ∗ 84 + 240 − 84 = 49.15 

And  

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
=

1.5 ∗ 600 ∗ 200
1.5 ∗ 600 + 800 − 600 = 163.64 

 
The estimated, stratified data, allows calculation of the adjusted association between SC and TD for 
confounding by OHL. After adjusting for OHL, the standardised relative risk can be estimated as 
 

𝑅𝑅𝑅𝑅,-. =
110

84 ∗ U163.64600 V + U36.36200 V ∗ 156
= 2.15 

 
Let’s use the formula and compute the adjusted risk ratio 
 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; = 1.84 ∗ 2
1.5 ∗ 0.75 + (1 − 0.75)
1.5 ∗ 0.35 + (1 − 0.35); = 2.15 

 
We can now see the impact of the bias caused by unmeasured confounding. The adjusted risk ratio is higher 
than the observed risk ratio. In this example, the risk was underestimated when the unmeasured 
confounding was not considered. One can argue that the estimates from bias analysis are as good as the 
values assigned to the bias parameters. While true, the point to emphasise here is that presenting the results 
from a quantitative bias analysis is an improvement over intuitive estimates of the impact of unmeasured 
confounding because the assumptions are explicit and the impacts given those assumptions can be 
quantified. Additionally, bias analysis allows evaluation of the plausibility of competing evaluations for the 
observed associations. As seen from the above example, bias analysis can provide justification for 
collection of new information if the gain in information due to unmeasured confounding is expected to be 
marginal. However, this must not lead to conclusions such as absence of bias implies no new information 
is required. If one does not want to limit to single value of the bias parameters, then one can also define 
multiple values for any of the three parameters. For example, computing the adjusted risk ratio for a 
combination of values of 𝑝𝑝6 and 𝑝𝑝: fixing	𝑅𝑅𝑅𝑅34, which can also be done using the above method (see R 
code in web appendix). Results then can be presented as shown in Figure 2. 
 

[Insert Figure 2 here] 
 

While the method described here is simple and allows to explore the impact of unmeasured confounder, it 
is limited by the accuracy of the values assigned to parameters and the knowledge of unmeasured/unknown 
confounders. Moreover the bias analysis presented above was carried out under the assumption that there 
was only a single unmeasured confounder. In reality, there can be several confounders; in such cases this 
method is not applicable and one must use more advanced methods such as probabilistic bias analysis.  
 
Risk Difference 
 
Here I demonstrate the conduct of bias analysis for risk difference.  We still use the information presented 
Table 3 for the first two columns.  

[Insert Table 4 Here] 
 
Values of 𝑁𝑁::, 𝑁𝑁6:, 𝑁𝑁:6 and 𝑁𝑁66 are computed as described above for risk ratio. However for computing 
the values of  𝐴𝐴: and 𝐵𝐵:  we need the risk difference values of bias parameter and the values of prevalence. 
These are assumed to be  𝑅𝑅𝐷𝐷34 = 0.15, 𝑝𝑝6 = 0.75 and 𝑝𝑝: = 0.35. 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
=
0.15 ∗ 800 ∗ (800 − 600) + 200 ∗ 600

800 = 180 

 
Similarly the value for 𝐴𝐴: can be computed as 

The estimated, stratified data, allows calculation of the 
adjusted association between SC and TD for confound-
ing by OHL. After adjusting for OHL, the standardised 
relative risk can be estimated as 

The relation between oral health literacy and tooth decay can be used to solve the cell values of the stratified 
Table 2 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁:: ∗ 𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
=

1.5 ∗ 84 ∗ 110
1.5 ∗ 84 + 240 − 84 = 49.15 

And  

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
=

1.5 ∗ 600 ∗ 200
1.5 ∗ 600 + 800 − 600 = 163.64 

 
The estimated, stratified data, allows calculation of the adjusted association between SC and TD for 
confounding by OHL. After adjusting for OHL, the standardised relative risk can be estimated as 
 

𝑅𝑅𝑅𝑅,-. =
110

84 ∗ U163.64600 V + U36.36200 V ∗ 156
= 2.15 

 
Let’s use the formula and compute the adjusted risk ratio 
 

𝑅𝑅𝑅𝑅,-. = 𝑅𝑅𝑅𝑅/01 2
𝑅𝑅𝑅𝑅34𝑝𝑝6 + (1 − 𝑝𝑝6)
𝑅𝑅𝑅𝑅34𝑝𝑝: + (1 − 𝑝𝑝:)

; = 1.84 ∗ 2
1.5 ∗ 0.75 + (1 − 0.75)
1.5 ∗ 0.35 + (1 − 0.35); = 2.15 

 
We can now see the impact of the bias caused by unmeasured confounding. The adjusted risk ratio is higher 
than the observed risk ratio. In this example, the risk was underestimated when the unmeasured 
confounding was not considered. One can argue that the estimates from bias analysis are as good as the 
values assigned to the bias parameters. While true, the point to emphasise here is that presenting the results 
from a quantitative bias analysis is an improvement over intuitive estimates of the impact of unmeasured 
confounding because the assumptions are explicit and the impacts given those assumptions can be 
quantified. Additionally, bias analysis allows evaluation of the plausibility of competing evaluations for the 
observed associations. As seen from the above example, bias analysis can provide justification for 
collection of new information if the gain in information due to unmeasured confounding is expected to be 
marginal. However, this must not lead to conclusions such as absence of bias implies no new information 
is required. If one does not want to limit to single value of the bias parameters, then one can also define 
multiple values for any of the three parameters. For example, computing the adjusted risk ratio for a 
combination of values of 𝑝𝑝6 and 𝑝𝑝: fixing	𝑅𝑅𝑅𝑅34, which can also be done using the above method (see R 
code in web appendix). Results then can be presented as shown in Figure 2. 
 

[Insert Figure 2 here] 
 

While the method described here is simple and allows to explore the impact of unmeasured confounder, it 
is limited by the accuracy of the values assigned to parameters and the knowledge of unmeasured/unknown 
confounders. Moreover the bias analysis presented above was carried out under the assumption that there 
was only a single unmeasured confounder. In reality, there can be several confounders; in such cases this 
method is not applicable and one must use more advanced methods such as probabilistic bias analysis.  
 
Risk Difference 
 
Here I demonstrate the conduct of bias analysis for risk difference.  We still use the information presented 
Table 3 for the first two columns.  

[Insert Table 4 Here] 
 
Values of 𝑁𝑁::, 𝑁𝑁6:, 𝑁𝑁:6 and 𝑁𝑁66 are computed as described above for risk ratio. However for computing 
the values of  𝐴𝐴: and 𝐵𝐵:  we need the risk difference values of bias parameter and the values of prevalence. 
These are assumed to be  𝑅𝑅𝐷𝐷34 = 0.15, 𝑝𝑝6 = 0.75 and 𝑝𝑝: = 0.35. 
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 Let’s use the formula and compute the adjusted 
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confounding by OHL. After adjusting for OHL, the standardised relative risk can be estimated as 
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We can now see the impact of the bias caused by unmeasured confounding. The adjusted risk ratio is higher 
than the observed risk ratio. In this example, the risk was underestimated when the unmeasured 
confounding was not considered. One can argue that the estimates from bias analysis are as good as the 
values assigned to the bias parameters. While true, the point to emphasise here is that presenting the results 
from a quantitative bias analysis is an improvement over intuitive estimates of the impact of unmeasured 
confounding because the assumptions are explicit and the impacts given those assumptions can be 
quantified. Additionally, bias analysis allows evaluation of the plausibility of competing evaluations for the 
observed associations. As seen from the above example, bias analysis can provide justification for 
collection of new information if the gain in information due to unmeasured confounding is expected to be 
marginal. However, this must not lead to conclusions such as absence of bias implies no new information 
is required. If one does not want to limit to single value of the bias parameters, then one can also define 
multiple values for any of the three parameters. For example, computing the adjusted risk ratio for a 
combination of values of 𝑝𝑝6 and 𝑝𝑝: fixing	𝑅𝑅𝑅𝑅34, which can also be done using the above method (see R 
code in web appendix). Results then can be presented as shown in Figure 2. 
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While the method described here is simple and allows to explore the impact of unmeasured confounder, it 
is limited by the accuracy of the values assigned to parameters and the knowledge of unmeasured/unknown 
confounders. Moreover the bias analysis presented above was carried out under the assumption that there 
was only a single unmeasured confounder. In reality, there can be several confounders; in such cases this 
method is not applicable and one must use more advanced methods such as probabilistic bias analysis.  
 
Risk Difference 
 
Here I demonstrate the conduct of bias analysis for risk difference.  We still use the information presented 
Table 3 for the first two columns.  

[Insert Table 4 Here] 
 
Values of 𝑁𝑁::, 𝑁𝑁6:, 𝑁𝑁:6 and 𝑁𝑁66 are computed as described above for risk ratio. However for computing 
the values of  𝐴𝐴: and 𝐵𝐵:  we need the risk difference values of bias parameter and the values of prevalence. 
These are assumed to be  𝑅𝑅𝐷𝐷34 = 0.15, 𝑝𝑝6 = 0.75 and 𝑝𝑝: = 0.35. 
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Similarly the value for 𝐴𝐴: can be computed as 

 We can now see the impact of the bias caused by 
unmeasured confounding. The adjusted risk ratio is higher 
than the observed risk ratio. In this example, the risk was 
underestimated when the unmeasured confounding was 
not considered. One can argue that the estimates from 
bias analysis are as good as the values assigned to the 
bias parameters. While true, the point to emphasise here is 
that presenting the results from a quantitative bias analysis 
is an improvement over intuitive estimates of the impact 
of unmeasured confounding because the assumptions are 
explicit and the impacts given those assumptions can be 
quantified. Additionally, bias analysis allows evaluation 
of the plausibility of competing evaluations for the ob-
served associations. As seen from the above example, bias 
analysis can provide justification for collection of new 
information if the gain in information due to unmeasured 
confounding is expected to be marginal. However, this 
must not lead to conclusions such as absence of bias 
implies no new information is required. If one does not 
want to limit to a single value of the bias parameters, 
then one can also define multiple values for any of the 
three parameters. For example, computing the adjusted 
risk ratio for a combination of values of p0 and p1 fixing 
RRUY, which can also be done using the above method 
(see R code in web appendix). The results then can be 
presented as shown in Figure 2. 

While the method described here is simple and al-
lows to explore the impact of unmeasured confounder, 
it is limited by the accuracy of the values assigned to 
parameters and the knowledge of unmeasured/unknown 
confounders. Moreover the bias analysis presented above 
was carried out under the assumption that there was only 
a single unmeasured confounder. In reality, there can be 
several confounders; in such cases this method is not 
applicable and one must use more advanced methods 
such as probabilistic bias analysis. 
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Risk Difference 

Here I demonstrate the conduct of bias analysis for risk 
difference. We still use the information presented Table 
3 for the first two columns. 

 Now using these estimated values of the cells the 
adjusted risk difference can be computed as 

Figure 2: 3D surface plot of adjusted risk ratios for a sequence of bias parameters p1 and p0.

Total U = 1 U = 0
Outcome X = 1 X = 0 X = 1 X = 0 X = 1 X = 0
Y = 1 110 200 61.9 180 48.1 20
Y = 0 130 600 22.1 420 107.9 180

240 800 84 600 156 200

Table 4: Hypothetical data on the relationship between sugar 
consumption and tooth decay stratified by oral health literacy 
(Unmeasured confounder). Crude (first two columns) and 
estimated data (remaining four columns).

Values of N11, N01, N10 and N00 are computed as de-
scribed above for risk ratio. However for computing the 
values of A1 and B1 we need the risk difference values 
of bias parameter and the values of prevalence. These 
are assumed to be RDUY = 0.15, p0 = 0.75 and p1= 0.35. 

The relation between oral health literacy and tooth decay can be used to solve the cell values of the stratified 
Table 2 

𝐴𝐴: =
𝑅𝑅𝑅𝑅34𝑁𝑁:: ∗ 𝑎𝑎

𝑅𝑅𝑅𝑅34𝑁𝑁:: + 𝑛𝑛: − 𝑁𝑁::
=

1.5 ∗ 84 ∗ 110
1.5 ∗ 84 + 240 − 84 = 49.15 

And  

𝐵𝐵: =
𝑅𝑅𝑅𝑅34𝑁𝑁6:𝑏𝑏

𝑅𝑅𝑅𝑅34𝑁𝑁6: + 𝑛𝑛@ − 𝑁𝑁6:
=

1.5 ∗ 600 ∗ 200
1.5 ∗ 600 + 800 − 600 = 163.64 

 
The estimated, stratified data, allows calculation of the adjusted association between SC and TD for 
confounding by OHL. After adjusting for OHL, the standardised relative risk can be estimated as 
 

𝑅𝑅𝑅𝑅,-. =
110

84 ∗ U163.64600 V + U36.36200 V ∗ 156
= 2.15 

 
Let’s use the formula and compute the adjusted risk ratio 
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1.5 ∗ 0.35 + (1 − 0.35); = 2.15 

 
We can now see the impact of the bias caused by unmeasured confounding. The adjusted risk ratio is higher 
than the observed risk ratio. In this example, the risk was underestimated when the unmeasured 
confounding was not considered. One can argue that the estimates from bias analysis are as good as the 
values assigned to the bias parameters. While true, the point to emphasise here is that presenting the results 
from a quantitative bias analysis is an improvement over intuitive estimates of the impact of unmeasured 
confounding because the assumptions are explicit and the impacts given those assumptions can be 
quantified. Additionally, bias analysis allows evaluation of the plausibility of competing evaluations for the 
observed associations. As seen from the above example, bias analysis can provide justification for 
collection of new information if the gain in information due to unmeasured confounding is expected to be 
marginal. However, this must not lead to conclusions such as absence of bias implies no new information 
is required. If one does not want to limit to single value of the bias parameters, then one can also define 
multiple values for any of the three parameters. For example, computing the adjusted risk ratio for a 
combination of values of 𝑝𝑝6 and 𝑝𝑝: fixing	𝑅𝑅𝑅𝑅34, which can also be done using the above method (see R 
code in web appendix). Results then can be presented as shown in Figure 2. 
 

[Insert Figure 2 here] 
 

While the method described here is simple and allows to explore the impact of unmeasured confounder, it 
is limited by the accuracy of the values assigned to parameters and the knowledge of unmeasured/unknown 
confounders. Moreover the bias analysis presented above was carried out under the assumption that there 
was only a single unmeasured confounder. In reality, there can be several confounders; in such cases this 
method is not applicable and one must use more advanced methods such as probabilistic bias analysis.  
 
Risk Difference 
 
Here I demonstrate the conduct of bias analysis for risk difference.  We still use the information presented 
Table 3 for the first two columns.  

[Insert Table 4 Here] 
 
Values of 𝑁𝑁::, 𝑁𝑁6:, 𝑁𝑁:6 and 𝑁𝑁66 are computed as described above for risk ratio. However for computing 
the values of  𝐴𝐴: and 𝐵𝐵:  we need the risk difference values of bias parameter and the values of prevalence. 
These are assumed to be  𝑅𝑅𝐷𝐷34 = 0.15, 𝑝𝑝6 = 0.75 and 𝑝𝑝: = 0.35. 
 

𝐵𝐵: =
𝑅𝑅𝐷𝐷34𝑛𝑛@(𝑛𝑛@ − 𝑁𝑁6:) + 𝑏𝑏𝑁𝑁6:

𝑛𝑛@
=
0.15 ∗ 800 ∗ (800 − 600) + 200 ∗ 600

800 = 180 

 
Similarly the value for 𝐴𝐴: can be computed as 

 Similarly the value for can be computed as 

 

𝐴𝐴: =
𝑅𝑅𝐷𝐷34𝑛𝑛:(𝑛𝑛: − 𝑁𝑁::) + 𝑎𝑎𝑁𝑁::

𝑛𝑛:
=
0.15 ∗ 240 ∗ (240 − 84) + 110 ∗ 84

240 = 61.9 

 
Now using these estimated values of the cells the adjusted risk difference can be computed as 
 

𝑅𝑅𝐷𝐷,-. = 𝑅𝑅𝐷𝐷/01 + (𝑅𝑅𝐷𝐷34)(𝑝𝑝6 − 𝑝𝑝:) = 0.21 + 0.15 ∗ (0.75 − 0.35) = 0.27 
 
Similar to risk ratio once again we notice that risk difference here too is underestimated when the 
unmeasured confounder (oral health literacy) is not accounted for.  
 
 
Discussion 
 
Usually, when analysing the results of an epidemiological study, the true data generating model is never 
known. We do not reliably know which variables are confounders of the association of interest, the form in 
which they should enter the model, or the time scale over which they act. Therefore validity of an 
epidemiological study may be threatened by both residual and unmeasured confounding. As shown 
repeatedly, unmeasured confounding can be a serious problem (Greenland 1996; Rosenbaum and Rubin, 
1983, Brumback et al., 2004). Where residual confounding is defined as the distortion that remains after 
controlling for confounding in design and/or analysis of a study (e.g confounding due to measurement 
error). As demonstrated in this paper, even when one unmeasured confounder is omitted from analysis, it 
can lead to biased estimates. Confounding can be caused by variables that are associated with both outcome 
and exposure and are not on the causal pathway between exposure and outcome. Controlling for variables 
with these properties may remove bias; investigators must perfectly characterise their association with the 
exposure of interest. If such characterisation is not possible, then one must perform sensitivity analysis to 
assess whether unmeasured and residual confounding are likely problems. Even though we have illustrated 
how the sensitivity analysis is performed for single confounders, the possibility of the presence of several 
unmeasured confounders should not be ruled out. Many authors have shown that unmeasured confounders 
can have a cumulative effect (Greenland 1996; Lash, 2003; Brumback et al., 2004). Therefore it may not 
be enough to state that a single unmeasured confounder would need an implausibly large relative risk to 
remove the observed confounding. Here we have used hypothetical examples to illustrate the importance 
of unmeasured confounding. While analytic results are always desirable, they are not always possible to 
attain (VanderWeele and Arah, 2011). Moreover, from logistic point of view epidemiological data 
collection and analysis often require substantial resources including financial resources to collect data hence 
these resources must be spent with great care especially if the gain in information is expected to marginal. 
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 Similar to the risk ratio, once again we notice that 
risk difference is underestimated when the unmeasured 
confounder (oral health literacy) is not accounted for. (See 
web supplement for the R code used in the computation 
https://universityofadelaide.box.com/s/7n3fbyaqkh1oevl2
a0h0fvvdmuwd2nte).

Discussion 

Usually, when analysing the results of an epidemiological 
study, the true data generating model is never known. We 
do not reliably know which variables are confounders of 
the association of interest, the form in which they should 
enter the model, or the time scale over which they act. 
Therefore, validity of an epidemiological study may be 
threatened by both residual and unmeasured confound-
ing. As shown repeatedly, unmeasured confounding can 
be a serious problem (Greenland, 1996; Rosenbaum and 
Rubin, 1983, Brumback et al., 2004). Where residual 
confounding is defined as the distortion that remains after 
controlling for confounding in design and/or analysis of 
a study (e.g confounding due to measurement error). As 
demonstrated in this paper, even when one unmeasured 
confounder is omitted from analysis, it can lead to bi-
ased estimates. Confounding can be caused by variables 
that are associated with both outcome and exposure and 
are not on the causal pathway between exposure and 
outcome. Controlling for variables with these properties 
may remove bias; investigators must perfectly characterise 
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their association with the exposure of interest. If such 
characterisation is not possible, then one must perform 
sensitivity analysis to assess whether unmeasured and 
residual confounding are likely problems. Even though 
we have illustrated how the sensitivity analysis is per-
formed for single confounders, the possibility of the 
presence of several unmeasured confounders should not 
be ruled out. Many authors have shown that unmeasured 
confounders can have a cumulative effect (Greenland, 
1996; Lash, 2003; Brumback et al., 2004). Therefore 
it may not be enough to state that a single unmeasured 
confounder would need an implausibly large relative 
risk to remove the observed confounding. Here we have 
used hypothetical examples to illustrate the importance 
of unmeasured confounding. While analytic results are 
always desirable, they are not always possible to attain 
(Van der Weele and Arah, 2011). Moreover, from a 
logistic point of view, epidemiological data collection 
and analysis often require substantial resources including 
financial resources to collect data, hence these resources 
must be spent with great care especially if the gain in 
information is expected to marginal. 
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