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Objective: Previous observational studies reported an association of diabetes mellitus (DM) with oropharyngeal cancer (OPC), however, the 
potential causality of the association between them remains unclear. Methods: To explore this causal relationship in individuals of European 
descent, a two-sample Mendelian randomization (MR) study was conducted. A genome-wide association study (GWAS) of DM was used 
to represent the exposure factor (T1DM: n = 24,840; T2DM: n = 215,654), and GWAS of OPC represented the outcome (n = 3,448). 
Results: Forty-one single nucleotide polymorphisms (SNPs) related to T1DM and fifty-four SNPs related to T2DM were identified as ef-
fective instrumental variables (IVs) in the two-sample MR analyses. In IVW estimates, neither T1DM nor T2DM significantly contributed 
to an increased risk of OPC [T1DM: OR 1.0322 (95% CI 0.9718, 1.0963), P = 0.3033; T2DM: OR 0.9998 (95% CI 0.9995, 1.0002), P 
= 0.2858]. Four other regression models produced similar results. MR-Egger regression results [Cochran’s Q statistic was 47.1544 (P = 
0.1466) in T1DM, and 35.5084 (P = 0.9512) in T2DM] suggested no horizontal pleiotropy between IVs and outcomes. Conclusion: Our 
findings suggest little evidence to support the genetic role of diabetes mellitus in OPC development in the European population.
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Introduction

Oropharyngeal cancer (OPC) is a common subtype of 
head and neck squamous cell carcinoma (HNSCC), 
which includes cancers of the oral cavity and the oro-
pharynx and is the world’s sixth most common type 
of cancer (Ferlay et al., 2019). The prognosis of OPC 
is poor, with a five-year survival of 15%–20% (Liu et 
al., 2015), and its incidence varies greatly worldwide, 
with an increasing trend in the UK (18.8%), Australia 
(8.7%), Japan (21.3%), and the USA (3.7%) (Bosetti et 
al., 2020), largely driving global incidence rates of head 
and neck cancer (HNC). The incidence and mortality of 
OPC have increased rapidly among older adults (Damga-
cioglu et al., 2022), peaking at 50–59 years (Ghazawi et 
al., 2020). The established risk factors include cigarette 
smoking and alcohol consumption (Hashibe et al., 2009), 
as well as infection with human papilloma virus (HPV) 
(Ang, 2010). The notable increase in regional-stage and 
the concurrent recent increase in mortality renders OPC 
a growing public health concern and calls for urgent 
improvements in prevention.

Diabetes mellitus (DM), a common, complex disease 
that is typically divided into two major subtypes, type-1 
and type-2 DM (T1DM and T2DM, respectively), along 
with less common types. T1DM is an endocrine disorder 
in which pancreatic β-cells stop producing insulin, typi-
cally due to autoimmune destruction (Syed, 2022), and 
the pathophysiology of T2DM includes insulin resistance 
and initial hyperinsulinemia, followed by a progressive 
decrease in the capacity of pancreatic β cells to produce 
insulin (Ahmad et al., 2022). DM poses a substantial 
burden on individual and population health, and it is 
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commonly associated with multiple types of tumors, 
especially liver, colorectal, and pancreatic cancer (Inoue, 
2006; Sasazuki et al., 2013). High levels of blood glucose 
(Jee, 2005; Stocks et al., 2009) or glycated hemoglobin 
A1c (Goto et al., 2016) are associated with an increased 
risk of cancer. From a biological perspective, these as-
sociations appear intuitive as hyperglycemia increases 
mitochondrial glucose oxidation, thereby promoting DNA 
damage through oxidative stress (Goto et al., 2020). This 
may help identify a potential strategy to prevent some 
forms of cancer, considering that diabetes or high glucose 
levels can be prevented through lifestyle or medication 
adaption. Similar associations also occur between OPC 
and DM. A multicenter study (Spratt et al., 2016) in the 
USA included 1,745 patients with OPC, 184 of which 
had DM at the time of diagnosis. Ogunsakin et al. (2018) 
reported that of 310 patients with squamous cell carcinoma 
(SCC) of the larynx or oropharynx, 54 had T2DM, and 
in a subgroup of oropharyngeal squamous cell carcinoma 
(OPSCC) patients, DM was significantly associated 
with tumor size (Zaoui et al., 2016). DM increased the 
risk of HNC (Tseng et al., 2014; Choi et al., 2022) in 
men and women and T2DM was associated with HNC 
recurrence (Hu et al., 2020). A further study examined 
data from 25,154 twins and found that midlife diabetes 
increased the risk of pharyngeal cancer in later life (Bao 
et al., 2018). A retrospective cohort study showed that 
the oropharynx (24%) was the common cancer subsite 
in T2DM patients with HNSCC (Lee et al., 2019), fol-
lowed the larynx and oral cavity (Foreman et al., 2017). 
Further, a meta-analysis showed a positive association 
between T2DM and OPC, when HNC was stratified by 
cancer type (Yan et al., 2021).
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Similar results were found in studies on the associa-
tion between T1DM and cancer risk, as even young adult 
patients with TIDM have a higher risk of cancer than 
those of similar age with T2DM (Kiss et al., 2019). An 
analysis of five national cohorts of persons with T1DM 
(Australia, Denmark, Finland, Scotland, and Sweden) 
found that those with type 1 diabetes had a higher 
incidence of cancer of the liver, pancreas, kidney, en-
dometrium, and ovary and a lower incidence of prostate 
cancer than the general population (Carstensen et al., 
2016). A meta-analysis of observational studies showed 
that patients with type 1 diabetes had an increased risk 
of cancer, significantly increased risk of cancers of the 
stomach, lung, pancreas, liver, ovary, and kidney, and a 
significantly decreased risk of breast cancer (Sona et al., 
2018). A prospective cohort study showed that women 
with childhood-onset type 1 diabetes in Sweden had a 
small but significantly elevated risk of cancer; the median 
age at cancer diagnosis was 28 years, and breast cancer 
was the most common form (Fredriksson et al., 2022). 

An association between DM and OPC was con-
firmed in multiple observational studies (Albergotti et 
al., 2016; Zaoui et al., 2016; Pleitz et al., 2017), how-
ever, observational epidemiological studies are prone to 
reverse causality bias, detection bias, and depletion of 
the susceptible (Lega and Lipscombe, 2020). Therefore, 
alternative study designs are urgently needed to confirm 
whether DM is a risk factor for OPC. 

Mendelian randomization (MR) in epidemiological 
research may provide an economical approach to address 
this problem. MR utilizes genetic variants that are deter-
mined before birth, and which remain constant throughout 
life (Vincent and Yaghootkar, 2020). Data may be ob-
tained from large-scale genome-wide association studies 
(GWASs) to test potential associations between risk factors 
and outcomes consistent with a causal effect (Smith and 
Ebrahim, 2003). Genetic variants are randomly allocated at 
conception and are thus generally unrelated to confounders 
(such as environmental and self-adopted factors), which 
minimizes the risk of confounding (Figure 1). MR should 
satisfy the following three conditions: (1) there should be 
a strong correlation between instrumental variable (IVs, 
such as single nucleotide polymorphisms [SNPs] and the 
exposure factor X); (2) IVs should not correlate with any 
confounding factor U associated with exposure-outcome; 
(3) IVs should not affect the outcome Y unless it is pos-
sible to do so by association with exposure to X. 

Whilst some epidemiological studies associate DM 
with OPC, reverse causality and residual confounding due 
to common risk factors may exist, and it remains unclear 
whether diabetes contributes to OPC development. Thus, 
we conducted an MR study to investigate the causal as-
sociation between OPC and DM. Directed acyclic graphs 
showed the rationale for the study (Figure 1).

Method

Genome-wide association study data of T1DM (GWAS ID: 
ebi-a-GCST010681), T2DM (GWAS ID: finn-b-E4_DM2), 
and OPC (GWAS ID: ieu-b-97) with the largest sample in 
recent years were obtained from the website of the IEU 
Open GWAS project (gwas.mrcieu.ac.uk) to generate the 
exposure dataset for OPC (Lesseur et al., 2016). In total, 

42,852 cases and 201,088 controls with European ancestry 
from previously published GWASs were included. The 
GWAS outcome datasets and T1DM cases were compiled 
from multiple T1DM case cohorts and control cohorts 
(Forgetta, 2020) that included 24,840 individuals (9,266 
cases and 15,574 controls) (https://gwas.mrcieu.ac.uk/
datasets/ebi-a-GCST010681/). The T2DM GWAS included 
32,469 cases and 183,185 controls)(https://gwas.mrcieu.
ac.uk/datasets/finn-b-E4_DM2/) and the GWAS involved 
3,448 individuals (1,119 cases and 2,329 controls) (https://
gwas.mrcieu.ac.uk/datasets/ieu-b-96/). 

We performed a two-sample MR analysis using DM-
associated genetic variants as IVs. 

Exposed SNPs were identified regarding associations 
with T1DM, T2DM, and OPC in the IEU Open GWAS. We 
applied several criteria for screening SNPs, i.e., genome-
wide association (P < 5×10-8), independent inheritance (r2 
< 0.01), a linkage disequilibrium (LD) coefficient (r2 < 
0.001), and a width of the linkage disequilibrium area of 
10,000 kb (Davey Smith and Hemani, 2014), but without 
linkage disequilibrium in the summary statistics. 

The OPC-related SNPs were extracted from GWAS 
summary data of T1DM, T2DM; a minimum r 2 > 0. 8 
was applied, the missing SNPs were replaced with the 
SNPs with high linkage, and the SNPs without alternative 
sites were removed. The information was summarized, and 
SNPs (P < 5×10-8) directly related to T1DM or T2DM 
were excluded (Hartwig et al., 2016).

Five regression models including MR-Egger regres-
sion, weighted median model, inverse variance weighting 
of random effects (IVW) model, weighted model, and 
simple mode were used for analysis. Cochran’s Q test 
was also applied to determine SNP heterogeneity (Bowden 
et al., 2018); if heterogeneity occurred, we focused on 
the IVW model results; the leave-one-out method was 
used for sensitivity analysis. The above methods were 
implemented using the Two Sample MR package in R 
software version 4.0.4, with α = 0. 05.

We generated scatter and forest plots of each out-
come to demonstrate the directional effect of DM on 
the outcomes. We also produced leave-one-out plots and 

Figure 1. Directed acyclic graph of the rationale for MR 
study.  
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funnel plots to roughly estimate reliability and pleiotropy. 
Heterogeneity of effects was assessed according to the 
scatter plots and Cochran’s Q tests for SNP exposure 
and outcome associations.

 Results

Single nucleotide polymorphisms related to T1DM were 
eliminated, leaving 41 SNPs finally included as IVs. The 
same was applied with 54 SNPs in T2DM (data available 
at https://www.cdhjournal.org/supplementary/263e46514240
d764357f15e2857ad16e). The intercept term of MR-Egger 
regression in T1DM was 0.0202 (P = 0.6619), and in T2DM 
it was 0.0204 (P = 0.4263), suggesting no genetic pleiotropy 
between the screened SNPs and T1DM or T2DM.

Five regression models were fitted in the two-sample 
MR analysis to detect whether diabetes was a risk factor 
for OPC. According to IVW estimates, neither T1DM nor 
T2DM significantly increased the risk of OPC (T1DM: OR 
1.0322 (95% confidence interval (CI) 0.9718, 1.0963), P 
= 0.3033; T2DM: OR 0.9998 (95% CI 0.9995, 1.0002), 
P = 0.2858) (shown in Tables 1 and 2; Figures 2 and 
3). Additionally, MR-Egger analysis (T1DM: OR 1.0158 
(95% CI 0.9252, 1.1154), P = 0.7436; T2DM: OR 
1.0002 (95% CI 0.9995, 1.0009), P = 0.5424), weighted 
median analysis (T1DM: OR 1.0199 (95% CI 0.9434, 
1.1027), P = 0.6201; T2DM: OR 1.0000 (95% CI 0.9993, 
1.0006), P = 0.9887), simple mode analysis (T1DM: OR 
1.0447 (95% CI 0.8676, 1.2578), P = 0.6472; T2DM: 
OR 0.9986 (95% CI 0.9973, 0.9999), P = 0.0308), and 
weighted mode analysis (T1DM: OR 1.0146 (95% CI 
0.9456, 1.0886), P = 0.6895; T2DM: OR 1.000 (95% 
CI 0.9994, 1.0007), P = 0.8575), also produced similar 
results (Tables 1 and 2; Figure 3). 

MR-Egger regression was used to test for heterogene-
ity [Cochran’s Q statistic was 47.1544 (P = 0.1466) for 
the set of 41 SNPs in T1DM, and 35.5084 (P = 0.9512) 
for the set of 54 SNPs in T2DM] suggesting no horizontal 

pleiotropy between IVs and outcomes. The funnel plots 
of T1DM and T2DM showed the basic symmetry of all 
included SNPs, indicating neither horizontal pleiotropy 
nor heterogeneity (Figure 4). 

Leave-one-out sensitivity analysis suggested that, re-
gardless of which SNP was removed, the removal would 
not change the findings (all lines were on the right side of 
0 or crossed the invalid line and were close to the range 
of the total effect), which indicated that this MR result 
was robust (Data available at https://www.cdhjournal.org/
supplementary/263e46514240d764357f15e2857ad16e).

 Discussion

Previous observational studies have associated T1DM and 
T2DM with the development of oropharyngeal cancer. We 
thus used various recent large datasets from the website 
of IEU Open GWAS project and MR methods to verify 
the causal relationship between DM and OPC. Taken 
together, the results did not support a causal association 
between these two diseases.

A substantial amount of epidemiological evidence 
indicates that diabetes increases the risk of many types 
of cancer and affects the long-term efficacy of cancer 
treatment. The American Oncology Association and the 
American Diabetes Association divided the possible links 
between cancer and diabetes into three categories: (a) 
unmodifiable risk factors (age, sex, and ethnicity), (b) 
modifiable risk factors (including obesity, physical activ-
ity, smoking, and alcohol consumption), and (c) biological 
links between diabetes and cancer (for example, hyperin-
sulinemia, hyperglycemia, insulin resistance, and chronic 
inflammation) (Gallagher and LeRoith, 2011). According 
to site-specific cancer grouping, previous meta-analyses 
showed that the relative risks were highest (approximately 
two-fold or higher) for cancer of the pancreas, liver, and 
endometrium, and moderate (approximately 1.2-1.5-fold) 
for cancer of the colon and rectum, breast, and bladder 
(Tsilidis et al., 2015; Pearson-Stuttard et al., 2018).

Randomized controlled trials are considered the gold 
standard to determine causality and strong statistical as-
sociations may be observed between an exposure and 
outcome, however, it remains uncertain whether all con-
founders of the association have been identified, measured, 
and appropriately adjusted for (Bowden and Holmes, 
2019). To minimize the influence of bias and residual 
confounders in observational studies, MR can be applied 
with GWAS data to assess the causality in putative expo-
sure–outcome pathways (Burgess et al., 2015), utilizing 
the random allocation of genotypes at conception, which 
renders genotypes independent of potential confounders and 
also avoids reverse causation (Smith and Ebrahim, 2003).

Previous studies have shown that DM promotes the 
development of some cancers, whereas different results 
were obtained when MR was used to examine the causal 
relationship between DM and these cancers. MR, which 
is essentially a genetic analogue of the RCT (Barroso 
and McCarthy, 2019), uses genetics to assess how key 
environmental and lifestyle factors (e.g. T2DM) influence 
complex diseases (e.g. cancer). Our results support the 
assumption that DM (T1DM or T2DM) per se may not 
be the responsible factor underlying the reported positive 
association of diabetes with OPC. Five analysis methods 

Model  SE  P OR (95%CI)
MR Egger 0.0477 0.7436 1.0158 (0.9252-1.1154)
Weighted median 0.0398 0.6201 1.0199 (0.9434-1.1027)
IVW 0.0308 0.3033 1.0322 (0.9718-1.0963)
Simple mode 0.0947 0.6472 1.0447 (0.8676-1.2578)
Weighted mode 0.0359 0.6895 1.0146 (0.9456-1.0886)

Table 1. MR estimates of causal effects of T1DM and OPC.

SE, standard error; OR, odds ratio; CI, confidence interval; MR, 
Mendelian randomization; IVW, inverse-variance weighted.

Model SE P OR (95%CI)
MR Egger 0.0004 0.5424 1.0002 (0.9995-1.0009)
Weighted median 0.0003 0.9887 1.0000 (0.9993-1.0006)
IVW 0.0002 0.2858 0.9998 (0.9995-1.0002)
Simple mode 0.0007 0.0308 0.9986 (0.9973-0.9999)
Weighted mode 0.0003 0.8575 1.0000 (0.9994-1.0007)

Table 2. MR estimates of causal effect of T2DM and OPC.

SE, standard error; OR, odds ratio; CI, confidence interval; MR, 
Mendelian randomization; IVW, inverse-variance weighted.



215

4

Figure 2. Forest plot of the association of T1DM and T2DM with OPC. 

 

 
 

 

Black dots and bars indicate the causal estimate and 95% CI using each SNP.  

Red dots and bars indicate the overall estimate and 95% CI meta-analyzed in IVW.  

 

  

Figure 3

Black dots and bars indicate the causal estimate and 95% CI using each SNP. Red dots and bars indicate the overall 
estimate and 95% CI meta-analyzed in IVW. 
Figure 2. Forest plot of the association of T1DM and T2DM with OPC.

. Scatter plot of the effects of genetic variants on T1DM, T2DM, and OPC.

Figure 3. Scatter plot of the effects of genetic variants on T1DM, T2DM, and OPC. 

 

 
 

The slopes of the solid lines denote the magnitudes of the associations estimated from the 

MR analyses. 

 

  

Figure 4. Funnel plot of the association of T1DM and T2DM with OPC. 

 
 

  

Figure 4

The slopes of the solid lines denote the magnitudes of the associations estimated from the MR analyses.

. Funnel plot of the association of T1DM and T2DM with OPC.

4

Figure 2. Forest plot of the association of T1DM and T2DM with OPC. 

 

 
 

 

Black dots and bars indicate the causal estimate and 95% CI using each SNP.  

Red dots and bars indicate the overall estimate and 95% CI meta-analyzed in IVW.  

 

  

Figure 3

Black dots and bars indicate the causal estimate and 95% CI using each SNP. Red dots and bars indicate the overall 
estimate and 95% CI meta-analyzed in IVW. 
Figure 2. Forest plot of the association of T1DM and T2DM with OPC.

. Scatter plot of the effects of genetic variants on T1DM, T2DM, and OPC.

Figure 3. Scatter plot of the effects of genetic variants on T1DM, T2DM, and OPC. 

 

 
 

The slopes of the solid lines denote the magnitudes of the associations estimated from the 

MR analyses. 

 

  

Figure 4. Funnel plot of the association of T1DM and T2DM with OPC. 

 
 

  

Figure 4

The slopes of the solid lines denote the magnitudes of the associations estimated from the MR analyses.

. Funnel plot of the association of T1DM and T2DM with OPC.

Black dots and bars indicate the causal estimate and 95% CI using each SNP. Red dots and bars indicate the overall 
estimate and 95% CI meta-analyzed in IVW. 
Figure 2. Forest plot of the association of T1DM and T2DM with OPC.



216

(IVW, MR-Egger regression, weighted median model, 
weighted model, and simple mode) were used for our MR 
Analysis, producing consistent results, and none of them 
supported the causal relationship between DM and OPC. 
After excluding potential pleiotropic SNPs, the results of 
the three MR analyses remained consistent, confirming 
the robustness of the various analytical methods and 
results. To test the reliability of the conclusions obtained 
by the MR analysis, ‘leave one out’ sensitivity analysis 
excluded the possibility of individual SNPs driving causal 
results; further, the MR-Egger method can be used to 
assess the unbalanced pleiotropic effects and the causal 
effect of exposure on outcome. Our results are in general 
agreement with those reported in earlier MR studies. An 
analysis among 10,536 subcohort subjects and 3,541 
incident cancer cases in a Japanese population produced 
no strong evidence supporting the associations between 

DM and the risks of total and site-specific cancer such 
as colon cancer, pancreatic cancer, or liver cancer (Goto 
et al., 2020). A different study produced the same result 
with regard to T2DM and pancreatic, endometrial, renal 
cell, and ovarian cancer (Vincent and Yaghootkar, 2020). 
These studies and our findings indicate little evidence 
to sustain the genetic role of DM in OPC development. 
Conventional regression analyses may have over-estimated 
the true association, possibly due to uncontrolled con-
founding by common risk factors or reverse causation. 

Although there are differences in the pathogenesis of 
T1DM and T2DM, hazard ratios for site-specific cancers 
in persons with T1DM were similar to those observed 
among persons with T2DM, suggesting a potential common 
mechanism among persons with T1DM and T2DM. Perhaps 
a combination of multiple factors may explain the link 
between DM and OPC. However, the observed association 
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between T1DM/T2DM and cancer may be confounding, 
i.e., owing to common risk factors (Tsilidis et al., 2015), 
including advanced age, poor diet and lifestyle, and 
environmental factors that are associated with diabetes and 
HNSCC (Tanaka et al., 2017). Further, biological alterations 
caused by DM, including inflammation, insulin resistance, 
hyperinsulinemia, and hyperglycemia, but not genetic 
aspects, may also promote the initiation and progression of 
tumors (Hong et al., 2021). Hyperglycemia is a hallmark 
of T1DM and T2DM, and most cancer cells are highly 
dependent on glucose, thus high glucose concentrations 
can promote the growth of cancer cells (Dang, 2012) and 
the survival of bacteria, which renders diabetic patients 
susceptible to infection, and high-risk HPV 16/18 subtype 

infection is one of the key independent pathogenic factors 
for OPC (Gillison, 2000). DM is also associated with 
greater intracellular oxidative stress (Muniraj, 2012), 
which inactivates insulin receptors and is carcinogenic. 
Furthermore, the insulin receptor, IGF receptor, and IGFs, 
hyperinsulinemia and other factors also play important 
roles in tumorigenesis, which strongly implicated in cancer 
progression and modulate cell survival and proliferation, 
migration, angiogenesis and metastasis (Kerr and Baxter, 
2022), further increasing the risk of some cancers associated 
with DM (de Kort et al., 2019).

The DM and OPC datasets that we used were the most 
abundant publicly available GWAS data source, to our 
knowledge, however, the study population was of European 
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ancestry, which helped reduce the bias attributable to popula-
tion stratification but also reduced population stratification 
and cannot represent other ancestry. Further, we did not 
perform causal analysis stratified by gender or age. 

In contrast to observational studies, our MR analysis 
suggests that the genetic mechanisms responsible for 
DM may not play major roles in OPC development, 
suggesting that previous associations between DM and 
OPC are possibly confounded by potential biases or due 
to reverse causation, which can address the ambiguity in 
this aspect of clinical observation research. Further large-
scale prospective studies are warranted to replicate our 
findings. Simultaneously, from a public health perspective, 
it is certainly important to control common risk factors 
for both diseases, considering that DM and cancer share 
a number of established modifiable risk factors. Future 
research efforts should focus on fully identifying the 
pathogenesis of OPC, reduce modifiable cancer risk fac-
tors, and promote targeted clinical and social prevention 
strategies to reduce the development of OPC.

 In conclusion, we found little evidence for a causal 
role of genetically predicted DM in the risk of OPC in 
a large, well-powered study, indicating that previous as-
sociations between DM and OPC are possibly confounded 
by potential biases or due to reverse causation. 
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